These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 16141333)

  • 1. Comparative physical mapping links conservation of microsynteny to chromosome structure and recombination in grasses.
    Bowers JE; Arias MA; Asher R; Avise JA; Ball RT; Brewer GA; Buss RW; Chen AH; Edwards TM; Estill JC; Exum HE; Goff VH; Herrick KL; Steele CL; Karunakaran S; Lafayette GK; Lemke C; Marler BS; Masters SL; McMillan JM; Nelson LK; Newsome GA; Nwakanma CC; Odeh RN; Phelps CA; Rarick EA; Rogers CJ; Ryan SP; Slaughter KA; Soderlund CA; Tang H; Wing RA; Paterson AH
    Proc Natl Acad Sci U S A; 2005 Sep; 102(37):13206-11. PubMed ID: 16141333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive molecular cytogenetic analysis of sorghum genome architecture: distribution of euchromatin, heterochromatin, genes and recombination in comparison to rice.
    Kim JS; Islam-Faridi MN; Klein PE; Stelly DM; Price HJ; Klein RR; Mullet JE
    Genetics; 2005 Dec; 171(4):1963-76. PubMed ID: 16143604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence-based alignment of sorghum chromosome 3 and rice chromosome 1 reveals extensive conservation of gene order and one major chromosomal rearrangement.
    Klein PE; Klein RR; Vrebalov J; Mullet JE
    Plant J; 2003 Jun; 34(5):605-21. PubMed ID: 12787243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative sequence and genetic analyses of asparagus BACs reveal no microsynteny with onion or rice.
    Jakse J; Telgmann A; Jung C; Khar A; Melgar S; Cheung F; Town CD; Havey MJ
    Theor Appl Genet; 2006 Dec; 114(1):31-9. PubMed ID: 17016688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence-tagged high-density genetic maps of Zoysia japonica provide insights into genome evolution in Chloridoideae.
    Wang F; Singh R; Genovesi AD; Wai CM; Huang X; Chandra A; Yu Q
    Plant J; 2015 Jun; 82(5):744-57. PubMed ID: 25846381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A segment of the apospory-specific genomic region is highly microsyntenic not only between the apomicts Pennisetum squamulatum and buffelgrass, but also with a rice chromosome 11 centromeric-proximal genomic region.
    Gualtieri G; Conner JA; Morishige DT; Moore LD; Mullet JE; Ozias-Akins P
    Plant Physiol; 2006 Mar; 140(3):963-71. PubMed ID: 16415213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted analysis of orthologous phytochrome A regions of the sorghum, maize, and rice genomes using comparative gene-island sequencing.
    Morishige DT; Childs KL; Moore LD; Mullet JE
    Plant Physiol; 2002 Dec; 130(4):1614-25. PubMed ID: 12481045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence, annotation, and analysis of synteny between rice chromosome 3 and diverged grass species.
    Buell CR; Yuan Q; Ouyang S; Liu J; Zhu W; Wang A; Maiti R; Haas B; Wortman J; Pertea M; Jones KM; Kim M; Overton L; Tsitrin T; Fadrosh D; Bera J; Weaver B; Jin S; Johri S; Reardon M; Webb K; Hill J; Moffat K; Tallon L; Van Aken S; Lewis M; Utterback T; Feldblyum T; Zismann V; Iobst S; Hsiao J; de Vazeille AR; Salzberg SL; White O; Fraser C; Yu Y; Kim H; Rambo T; Currie J; Collura K; Kernodle-Thompson S; Wei F; Kudrna K; Ammiraju JS; Luo M; Goicoechea JL; Wing RA; Henry D; Oates R; Palmer M; Pries G; Saski C; Simmons J; Soderlund C; Nelson W; de la Bastide M; Spiegel L; Nascimento L; Huang E; Preston R; Zutavern T; Palmer L; O'Shaughnessy A; Dike S; McCombie WR; Minx P; Cordum H; Wilson R; Jin W; Lee HR; Jiang J; Jackson S;
    Genome Res; 2005 Sep; 15(9):1284-91. PubMed ID: 16109971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of hybridization-based markers (overgos) into physical maps for comparative and evolutionary explorations in the genus Oryza and in Sorghum.
    Hass-Jacobus BL; Futrell-Griggs M; Abernathy B; Westerman R; Goicoechea JL; Stein J; Klein P; Hurwitz B; Zhou B; Rakhshan F; Sanyal A; Gill N; Lin JY; Walling JG; Luo MZ; Ammiraju JS; Kudrna D; Kim HR; Ware D; Wing RA; San Miguel P; Jackson SA
    BMC Genomics; 2006 Aug; 7():199. PubMed ID: 16895597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A plant-transformation-competent BIBAC/BAC-based map of rice for functional analysis and genetic engineering of its genomic sequence.
    Li Y; Uhm T; Ren C; Wu C; Santos TS; Lee MK; Yan B; Santos F; Zhang A; Scheuring C; Sanchez A; Millena AC; Nguyen HT; Kou H; Liu D; Zhang HB
    Genome; 2007 Mar; 50(3):278-88. PubMed ID: 17502901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward integration of comparative genetic, physical, diversity, and cytomolecular maps for grasses and grains, using the sorghum genome as a foundation.
    Draye X; Lin YR; Qian XY; Bowers JE; Burow GB; Morrell PL; Peterson DG; Presting GG; Ren SX; Wing RA; Paterson AH
    Plant Physiol; 2001 Mar; 125(3):1325-41. PubMed ID: 11244113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high-density genetic recombination map of sequence-tagged sites for sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses.
    Bowers JE; Abbey C; Anderson S; Chang C; Draye X; Hoppe AH; Jessup R; Lemke C; Lennington J; Li Z; Lin YR; Liu SC; Luo L; Marler BS; Ming R; Mitchell SE; Qiang D; Reischmann K; Schulze SR; Skinner DN; Wang YW; Kresovich S; Schertz KF; Paterson AH
    Genetics; 2003 Sep; 165(1):367-86. PubMed ID: 14504243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into the Musa genome: syntenic relationships to rice and between Musa species.
    Lescot M; Piffanelli P; Ciampi AY; Ruiz M; Blanc G; Leebens-Mack J; da Silva FR; Santos CM; D'Hont A; Garsmeur O; Vilarinhos AD; Kanamori H; Matsumoto T; Ronning CM; Cheung F; Haas BJ; Althoff R; Arbogast T; Hine E; Pappas GJ; Sasaki T; Souza MT; Miller RN; Glaszmann JC; Town CD
    BMC Genomics; 2008 Jan; 9():58. PubMed ID: 18234080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A genome-wide BAC end-sequence survey of sugarcane elucidates genome composition, and identifies BACs covering much of the euchromatin.
    Kim C; Lee TH; Compton RO; Robertson JS; Pierce GJ; Paterson AH
    Plant Mol Biol; 2013 Jan; 81(1-2):139-47. PubMed ID: 23161199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative physical mapping reveals features of microsynteny between Glycine max, Medicago truncatula, and Arabidopsis thaliana.
    Yan HH; Mudge J; Kim DJ; Shoemaker RC; Cook DR; Young ND
    Genome; 2004 Feb; 47(1):141-55. PubMed ID: 15060611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alignment of the genomes of Brachypodium distachyon and temperate cereals and grasses using bacterial artificial chromosome landing with fluorescence in situ hybridization.
    Hasterok R; Marasek A; Donnison IS; Armstead I; Thomas A; King IP; Wolny E; Idziak D; Draper J; Jenkins G
    Genetics; 2006 May; 173(1):349-62. PubMed ID: 16489232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative transcriptomics of three Poaceae species reveals patterns of gene expression evolution.
    Davidson RM; Gowda M; Moghe G; Lin H; Vaillancourt B; Shiu SH; Jiang N; Robin Buell C
    Plant J; 2012 Aug; 71(3):492-502. PubMed ID: 22443345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping genes on an integrated sorghum genetic and physical map using cDNA selection technology.
    Childs KL; Klein RR; Klein PE; Morishige DT; Mullet JE
    Plant J; 2001 Aug; 27(3):243-55. PubMed ID: 11532170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence analysis of bacterial artificial chromosome clones from the apospory-specific genomic region of Pennisetum and Cenchrus.
    Conner JA; Goel S; Gunawan G; Cordonnier-Pratt MM; Johnson VE; Liang C; Wang H; Pratt LH; Mullet JE; DeBarry J; Yang L; Bennetzen JL; Klein PE; Ozias-Akins P
    Plant Physiol; 2008 Jul; 147(3):1396-411. PubMed ID: 18508959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromosome-level homeology in paleopolyploid soybean (Glycine max) revealed through integration of genetic and chromosome maps.
    Walling JG; Shoemaker R; Young N; Mudge J; Jackson S
    Genetics; 2006 Mar; 172(3):1893-900. PubMed ID: 16361231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.