BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

488 related articles for article (PubMed ID: 16141338)

  • 1. A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells.
    Stegmeier F; Hu G; Rickles RJ; Hannon GJ; Elledge SJ
    Proc Natl Acad Sci U S A; 2005 Sep; 102(37):13212-7. PubMed ID: 16141338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vector-based RNAi approaches for stable, inducible and genome-wide screens.
    Fewell GD; Schmitt K
    Drug Discov Today; 2006 Nov; 11(21-22):975-82. PubMed ID: 17055406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of RNA polymerase II to transcribe artificial microRNAs.
    Zeng Y; Cai X; Cullen BR
    Methods Enzymol; 2005; 392():371-80. PubMed ID: 15644193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A versatile tool for conditional gene expression and knockdown.
    Szulc J; Wiznerowicz M; Sauvain MO; Trono D; Aebischer P
    Nat Methods; 2006 Feb; 3(2):109-16. PubMed ID: 16432520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conditional gene expression and knockdown using lentivirus vectors encoding shRNA.
    Szulc J; Aebischer P
    Methods Mol Biol; 2008; 434():291-309. PubMed ID: 18470652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A tightly regulated and reversibly inducible siRNA expression system for conditional RNAi-mediated gene silencing in mammalian cells.
    Wu RH; Cheng TL; Lo SR; Hsu HC; Hung CF; Teng CF; Wu MP; Tsai WH; Chang WT
    J Gene Med; 2007 Jul; 9(7):620-34. PubMed ID: 17486668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An advanced blue-white screening method for construction of shRNA expression vectors.
    Yang J; Xu J; Zhong X; Zhang Y; Wu Q; Li W; Zhang X; Zhen P; Yang X; Chen L; Wang Y; Zhu D; Zhai C; Ma L
    Biochem Biophys Res Commun; 2009 Dec; 390(1):97-102. PubMed ID: 19781525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional analysis of the quantitative expression of a costimulatory molecule on dendritic cells using lentiviral vector-mediated RNA interference.
    Zhang L; Procuik M; Fang T; Kung SK
    J Immunol Methods; 2009 May; 344(2):87-97. PubMed ID: 19303417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A resource for large-scale RNA-interference-based screens in mammals.
    Paddison PJ; Silva JM; Conklin DS; Schlabach M; Li M; Aruleba S; Balija V; O'Shaughnessy A; Gnoj L; Scobie K; Chang K; Westbrook T; Cleary M; Sachidanandam R; McCombie WR; Elledge SJ; Hannon GJ
    Nature; 2004 Mar; 428(6981):427-31. PubMed ID: 15042091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid generation of knockdown transgenic mice by silencing lentiviral vectors.
    Singer O; Tiscornia G; Ikawa M; Verma IM
    Nat Protoc; 2006; 1(1):286-92. PubMed ID: 17406246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous targeting of HCV replication and viral binding with a single lentiviral vector containing multiple RNA interference expression cassettes.
    Henry SD; van der Wegen P; Metselaar HJ; Tilanus HW; Scholte BJ; van der Laan LJ
    Mol Ther; 2006 Oct; 14(4):485-93. PubMed ID: 16872906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel bidirectional expression system for simultaneous expression of both the protein-coding genes and short hairpin RNAs in mammalian cells.
    Hung CF; Cheng TL; Wu RH; Teng CF; Chang WT
    Biochem Biophys Res Commun; 2006 Jan; 339(4):1035-42. PubMed ID: 16337609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of expression vectors for RNA interference based on miRNAs and RNA splicing.
    Du G; Yonekubo J; Zeng Y; Osisami M; Frohman MA
    FEBS J; 2006 Dec; 273(23):5421-7. PubMed ID: 17076699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silencing of HIV-1 with RNA interference: a multiple shRNA approach.
    ter Brake O; Konstantinova P; Ceylan M; Berkhout B
    Mol Ther; 2006 Dec; 14(6):883-92. PubMed ID: 16959541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silencing of choline acetyltransferase expression by lentivirus-mediated RNA interference in cultured cells and in the adult rodent brain.
    Santamaria J; Khalfallah O; Sauty C; Brunet I; Sibieude M; Mallet J; Berrard S; Lecomte MJ
    J Neurosci Res; 2009 Feb; 87(2):532-44. PubMed ID: 18803282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of cervical cancer cell growth in vitro and in vivo with lentiviral-vector delivered short hairpin RNA targeting human papillomavirus E6 and E7 oncogenes.
    Gu W; Putral L; Hengst K; Minto K; Saunders NA; Leggatt G; McMillan NA
    Cancer Gene Ther; 2006 Nov; 13(11):1023-32. PubMed ID: 16810314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of porcine endogenous retroviruses (PERVs) in primary porcine cells by RNA interference using lentiviral vectors.
    Dieckhoff B; Karlas A; Hofmann A; Kues WA; Petersen B; Pfeifer A; Niemann H; Kurth R; Denner J
    Arch Virol; 2007; 152(3):629-34. PubMed ID: 17106623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel fugu U6 promoter driven shRNA expression vector for efficient vector based RNAi in fish cell lines.
    Zenke K; Kim KH
    Biochem Biophys Res Commun; 2008 Jul; 371(3):480-3. PubMed ID: 18452704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Primer extension-based method for the generation of a siRNA/miRNA expression vector.
    Gou D; Zhang H; Baviskar PS; Liu L
    Physiol Genomics; 2007 Nov; 31(3):554-62. PubMed ID: 17804605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ribonucleic acid interference: a new approach to the in vivo study of gene function.
    Anthony RV; Cantlon JD
    J Anim Sci; 2007 Mar; 85(13 Suppl):E18-9. PubMed ID: 17040949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.