These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 16141589)

  • 1. Trapping effect of eugenol on hydroxyl radicals induced by L-DOPA in vitro.
    Ogata M; Kaneya D; Shin-Ya K; Li L; Abe Y; Katoh H; Seki S; Seki Y; Gonda R; Urano S; Endo T
    Chem Pharm Bull (Tokyo); 2005 Sep; 53(9):1167-70. PubMed ID: 16141589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron-chelating agents never suppress Fenton reaction but participate in quenching spin-trapped radicals.
    Li L; Abe Y; Kanagawa K; Shoji T; Mashino T; Mochizuki M; Tanaka M; Miyata N
    Anal Chim Acta; 2007 Sep; 599(2):315-9. PubMed ID: 17870296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Antioxidant and antibacterial activities of dimeric phenol compounds].
    Ogata M
    Yakugaku Zasshi; 2008 Aug; 128(8):1149-58. PubMed ID: 18670180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroxyl radical generation by dissociation of water molecules during 1.65 MHz frequency ultrasound irradiation under aerobic conditions.
    Miyaji A; Kohno M; Inoue Y; Baba T
    Biochem Biophys Res Commun; 2017 Jan; 483(1):178-182. PubMed ID: 28040432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of pH, buffers and role of quinolinic acid, a novel iron chelating agent, in the determination of hydroxyl radical scavenging activity of plant extracts by Electron Paramagnetic Resonance (EPR).
    Fadda A; Barberis A; Sanna D
    Food Chem; 2018 Feb; 240():174-182. PubMed ID: 28946259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antioxidant activity of eugenol and related monomeric and dimeric compounds.
    Ogata M; Hoshi M; Urano S; Endo T
    Chem Pharm Bull (Tokyo); 2000 Oct; 48(10):1467-9. PubMed ID: 11045452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antioxidant Activity of Caffeic Acid against Iron-Induced Free Radical Generation--A Chemical Approach.
    Genaro-Mattos TC; Maurício ÂQ; Rettori D; Alonso A; Hermes-Lima M
    PLoS One; 2015; 10(6):e0129963. PubMed ID: 26098639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibitory effect of antioxidants on hydroxyl radical generation from methylguanidine: an ESR study.
    Noda Y; Mankura M
    Neurochem Res; 2009 Apr; 34(4):734-8. PubMed ID: 18688710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of Fe(2+)- and Fe(3+)- induced hydroxyl radical production by the iron-chelating drug deferiprone.
    Timoshnikov VA; Kobzeva TV; Polyakov NE; Kontoghiorghes GJ
    Free Radic Biol Med; 2015 Jan; 78():118-22. PubMed ID: 25451643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox Interactions of Vitamin C and Iron: Inhibition of the Pro-Oxidant Activity by Deferiprone.
    Timoshnikov VA; Kobzeva TV; Polyakov NE; Kontoghiorghes GJ
    Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32486511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the generation of hydroxyl radicals and their oxidative role in the presence of heterogeneous copper catalysts.
    Kim JK; Metcalfe IS
    Chemosphere; 2007 Oct; 69(5):689-96. PubMed ID: 17604820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A kinetic study of 3-chlorophenol enhanced hydroxyl radical generation during ozonation.
    Utsumi H; Han YH; Ichikawa K
    Water Res; 2003 Dec; 37(20):4924-8. PubMed ID: 14604638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diaziquone as a potential agent for photoirradiation therapy: formation of the semiquinone and hydroxyl radicals by visible light.
    Mossoba MM; Gutierrez PL
    Biochem Biophys Res Commun; 1985 Oct; 132(1):445-52. PubMed ID: 2998365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydroxyl and superoxide radical scavenging abilities of chromonyl-thiazolidine-2,4-dione compounds.
    Kruk I; Bozdağ-Dündar O; Ertan R; Aboul-Enein HY; Michalska T
    Luminescence; 2009; 24(2):96-101. PubMed ID: 18785617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NADPH-cytochrome-P-450 reductase promoted hydroxyl radical production by the iron(III)-ochratoxin A complex.
    Hasinoff BB; Rahimtula AD; Omar RF
    Biochim Biophys Acta; 1990 Oct; 1036(1):78-81. PubMed ID: 2171659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxyl radical generation by red tide algae.
    Oda T; Akaike T; Sato K; Ishimatsu A; Takeshita S; Muramatsu T; Maeda H
    Arch Biochem Biophys; 1992 Apr; 294(1):38-43. PubMed ID: 1312810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of high-performance liquid chromatography to detect hydroxyl and superoxide radicals generated from mitomycin C.
    Pritsos CA; Constantinides PP; Tritton TR; Heimbrook DC; Sartorelli AC
    Anal Biochem; 1985 Nov; 150(2):294-9. PubMed ID: 3004252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. When are metal ion-dependent hydroxyl and alkoxyl radical adducts of 5,5-dimethyl-1-pyrroline N-oxide artifacts?
    Hanna PM; Chamulitrat W; Mason RP
    Arch Biochem Biophys; 1992 Aug; 296(2):640-4. PubMed ID: 1321591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Egg yolk phosvitin inhibits hydroxyl radical formation from the fenton reaction.
    Ishikawa S; Yano Y; Arihara K; Itoh M
    Biosci Biotechnol Biochem; 2004 Jun; 68(6):1324-31. PubMed ID: 15215598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of total oxidant scavenging capacity of antioxidants for peroxynitrite, peroxyl radicals, and hydroxyl radicals.
    Regoli F; Winston GW
    Toxicol Appl Pharmacol; 1999 Apr; 156(2):96-105. PubMed ID: 10198274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.