These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 16141834)

  • 1. Designing a virtual reality model for aesthetic surgery.
    Smith DM; Aston SJ; Cutting CB; Oliker A; Weinzweig J
    Plast Reconstr Surg; 2005 Sep; 116(3):893-7. PubMed ID: 16141834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applications of virtual reality in aesthetic surgery.
    Smith DM; Aston SJ; Cutting CB; Oliker A
    Plast Reconstr Surg; 2005 Sep; 116(3):898-904; discussion 905-6. PubMed ID: 16141835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anatomical education and surgical simulation based on the Chinese Visible Human: a three-dimensional virtual model of the larynx region.
    Liu K; Fang B; Wu Y; Li Y; Jin J; Tan L; Zhang S
    Anat Sci Int; 2013 Sep; 88(4):254-8. PubMed ID: 23801001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creating a virtual surgical atlas of craniofacial procedures: Part I. Three-dimensional digital models of craniofacial deformities.
    Flores RL; Deluccia N; Grayson BH; Oliker A; McCarthy JG
    Plast Reconstr Surg; 2010 Dec; 126(6):2084-2092. PubMed ID: 21124148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional virtual model and animation of penile lengthening surgery.
    Wang R; Yang D; Li S
    J Plast Reconstr Aesthet Surg; 2012 Oct; 65(10):e281-5. PubMed ID: 22560455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A virtual reality atlas of craniofacial anatomy.
    Smith DM; Oliker A; Carter CR; Kirov M; McCarthy JG; Cutting CB
    Plast Reconstr Surg; 2007 Nov; 120(6):1641-1646. PubMed ID: 18040199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional sectioned images and three-dimensional surface models for learning the anatomy of the female pelvis.
    Shin DS; Jang HG; Hwang SB; Har DH; Moon YL; Chung MS
    Anat Sci Educ; 2013; 6(5):316-23. PubMed ID: 23463707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Creation of a Virtual Anatomy System based on Chinese Visible Human data sets.
    Fang B; Wu Y; Chu C; Li Y; Luo N; Liu K; Tan L; Zhang S
    Surg Radiol Anat; 2017 Apr; 39(4):441-449. PubMed ID: 27663868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photorealistic virtual anatomy based on Chinese Visible Human data.
    Heng PA; Zhang SX; Xie YM; Wong TT; Chui YP; Cheng CY
    Clin Anat; 2006 Apr; 19(3):232-9. PubMed ID: 16506219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer-assisted three-dimensional surgical planing and simulation. 3D soft tissue planning and prediction.
    Xia J; Samman N; Yeung RW; Wang D; Shen SG; Ip HH; Tideman H
    Int J Oral Maxillofac Surg; 2000 Aug; 29(4):250-8. PubMed ID: 11030394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional virtual reality surgical planning and simulation workbench for orthognathic surgery.
    Xia J; Samman N; Yeung RW; Shen SG; Wang D; Ip HH; Tideman H
    Int J Adult Orthodon Orthognath Surg; 2000; 15(4):265-82. PubMed ID: 11307184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An interactive three-dimensional virtual body structures system for anatomical training over the internet.
    Temkin B; Acosta E; Malvankar A; Vaidyanath S
    Clin Anat; 2006 Apr; 19(3):267-74. PubMed ID: 16506202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Creation of the virtual patient for the study of facial morphology.
    Kau CH
    Facial Plast Surg Clin North Am; 2011 Nov; 19(4):615-22, viii. PubMed ID: 22004856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The virtual dissecting room: Creating highly detailed anatomy models for educational purposes.
    Zilverschoon M; Vincken KL; Bleys RL
    J Biomed Inform; 2017 Jan; 65():58-75. PubMed ID: 27884788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Creating 3D models from Radiologic Images for Virtual Reality Medical Education Modules.
    Ammanuel S; Brown I; Uribe J; Rehani B
    J Med Syst; 2019 May; 43(6):166. PubMed ID: 31053902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional osteotomy planning in maxillofacial surgery including soft tissue prediction.
    Westermark A; Zachow S; Eppley BL
    J Craniofac Surg; 2005 Jan; 16(1):100-4. PubMed ID: 15699653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accomplishments and challenges of surgical simulation.
    Satava RM
    Surg Endosc; 2001 Mar; 15(3):232-41. PubMed ID: 11344421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The accuracy of virtual surgical planning in free fibula mandibular reconstruction: comparison of planned and final results.
    Roser SM; Ramachandra S; Blair H; Grist W; Carlson GW; Christensen AM; Weimer KA; Steed MB
    J Oral Maxillofac Surg; 2010 Nov; 68(11):2824-32. PubMed ID: 20828910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virtual reality haptic human dissection.
    Needham C; Wilkinson C; Soames R
    Stud Health Technol Inform; 2011; 163():397-9. PubMed ID: 21335827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy of virtual reality and stereolithographic models in maxillo-facial surgical planning.
    Robiony M; Salvo I; Costa F; Zerman N; Bandera C; Filippi S; Felice M; Politi M
    J Craniofac Surg; 2008 Mar; 19(2):482-9. PubMed ID: 18362729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.