BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 16142898)

  • 1. Structure and biochemical properties of PRL-1, a phosphatase implicated in cell growth, differentiation, and tumor invasion.
    Sun JP; Wang WQ; Yang H; Liu S; Liang F; Fedorov AA; Almo SC; Zhang ZY
    Biochemistry; 2005 Sep; 44(36):12009-21. PubMed ID: 16142898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trimeric structure of PRL-1 phosphatase reveals an active enzyme conformation and regulation mechanisms.
    Jeong DG; Kim SJ; Kim JH; Son JH; Park MR; Lim SM; Yoon TS; Ryu SE
    J Mol Biol; 2005 Jan; 345(2):401-13. PubMed ID: 15571731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The metastasis-promoting phosphatase PRL-3 shows activity toward phosphoinositides.
    McParland V; Varsano G; Li X; Thornton J; Baby J; Aravind A; Meyer C; Pavic K; Rios P; Köhn M
    Biochemistry; 2011 Sep; 50(35):7579-90. PubMed ID: 21806020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PRL tyrosine phosphatases regulate rho family GTPases to promote invasion and motility.
    Fiordalisi JJ; Keller PJ; Cox AD
    Cancer Res; 2006 Mar; 66(6):3153-61. PubMed ID: 16540666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible oxidation of the membrane distal domain of receptor PTPalpha is mediated by a cyclic sulfenamide.
    Yang J; Groen A; Lemeer S; Jans A; Slijper M; Roe SM; den Hertog J; Barford D
    Biochemistry; 2007 Jan; 46(3):709-19. PubMed ID: 17223692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A selective phosphatase of regenerating liver phosphatase inhibitor suppresses tumor cell anchorage-independent growth by a novel mechanism involving p130Cas cleavage.
    Daouti S; Li WH; Qian H; Huang KS; Holmgren J; Levin W; Reik L; McGady DL; Gillespie P; Perrotta A; Bian H; Reidhaar-Olson JF; Bliss SA; Olivier AR; Sergi JA; Fry D; Danho W; Ritland S; Fotouhi N; Heimbrook D; Niu H
    Cancer Res; 2008 Feb; 68(4):1162-9. PubMed ID: 18281492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of human protein tyrosine phosphatase 14 (PTPN14) at 1.65-A resolution.
    Barr AJ; Debreczeni JE; Eswaran J; Knapp S
    Proteins; 2006 Jun; 63(4):1132-6. PubMed ID: 16534812
    [No Abstract]   [Full Text] [Related]  

  • 8. Structure of human PRL-3, the phosphatase associated with cancer metastasis.
    Kim KA; Song JS; Jee J; Sheen MR; Lee C; Lee TG; Ro S; Cho JM; Lee W; Yamazaki T; Jeon YH; Cheong C
    FEBS Lett; 2004 May; 565(1-3):181-7. PubMed ID: 15135076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mass spectrometry study of PRL-3 phosphatase inactivation by disulfide bond formation and cysteine into glycine conversion.
    Orsatti L; Innocenti F; Lo Surdo P; Talamo F; Barbato G
    Rapid Commun Mass Spectrom; 2009 Sep; 23(17):2733-40. PubMed ID: 19639556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of N and C-terminal tails in DNA binding and assembly in Dps: structural studies of Mycobacterium smegmatis Dps deletion mutants.
    Roy S; Saraswathi R; Gupta S; Sekar K; Chatterji D; Vijayan M
    J Mol Biol; 2007 Jul; 370(4):752-67. PubMed ID: 17543333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanisms of the PRL phosphatases.
    Rios P; Li X; Köhn M
    FEBS J; 2013 Jan; 280(2):505-24. PubMed ID: 22413991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular characterization of laforin, a dual-specificity protein phosphatase implicated in Lafora disease.
    Girard JM; Lê KH; Lederer F
    Biochimie; 2006 Dec; 88(12):1961-71. PubMed ID: 17010495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural insights into molecular function of the metastasis-associated phosphatase PRL-3.
    Kozlov G; Cheng J; Ziomek E; Banville D; Gehring K; Ekiel I
    J Biol Chem; 2004 Mar; 279(12):11882-9. PubMed ID: 14704153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a PRL protein tyrosine phosphatase from Plasmodium falciparum.
    Pendyala PR; Ayong L; Eatrides J; Schreiber M; Pham C; Chakrabarti R; Fidock DA; Allen CM; Chakrabarti D
    Mol Biochem Parasitol; 2008 Mar; 158(1):1-10. PubMed ID: 18096253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of human TMDP, a testis-specific dual specificity protein phosphatase: implications for substrate specificity.
    Kim SJ; Jeong DG; Yoon TS; Son JH; Cho SK; Ryu SE; Kim JH
    Proteins; 2007 Jan; 66(1):239-45. PubMed ID: 17044055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mouse PRL-2 and PRL-3, two potentially prenylated protein tyrosine phosphatases homologous to PRL-1.
    Zeng Q; Hong W; Tan YH
    Biochem Biophys Res Commun; 1998 Mar; 244(2):421-7. PubMed ID: 9514946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of the hematopoietic tyrosine phosphatase (HePTP) catalytic domain: structure of a KIM phosphatase with phosphate bound at the active site.
    Mustelin T; Tautz L; Page R
    J Mol Biol; 2005 Nov; 354(1):150-63. PubMed ID: 16226275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PRL-3 and PRL-1 promote cell migration, invasion, and metastasis.
    Zeng Q; Dong JM; Guo K; Li J; Tan HX; Koh V; Pallen CJ; Manser E; Hong W
    Cancer Res; 2003 Jun; 63(11):2716-22. PubMed ID: 12782572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of human DSP18, a member of the dual-specificity protein tyrosine phosphatase family.
    Jeong DG; Cho YH; Yoon TS; Kim JH; Son JH; Ryu SE; Kim SJ
    Acta Crystallogr D Biol Crystallogr; 2006 Jun; 62(Pt 6):582-8. PubMed ID: 16699184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and functional effects of disease-causing amino acid substitutions affecting residues Ala72 and Glu76 of the protein tyrosine phosphatase SHP-2.
    Bocchinfuso G; Stella L; Martinelli S; Flex E; Carta C; Pantaleoni F; Pispisa B; Venanzi M; Tartaglia M; Palleschi A
    Proteins; 2007 Mar; 66(4):963-74. PubMed ID: 17177198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.