These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 16143285)

  • 1. Introduction of respiratory pattern generators into models of respiratory control.
    Longobardo G; Evangelisti CJ; Cherniack NS
    Respir Physiol Neurobiol; 2005 Oct; 148(3):285-301. PubMed ID: 16143285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural model of frog ventilatory rhythmogenesis.
    Horcholle-Bossavit G; Quenet B
    Biosystems; 2009 Jul; 97(1):35-43. PubMed ID: 19376192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of breathing during cortical substitution of the spontaneous automatic respiratory rhythm.
    Haouzi P; Chenuel B; Whipp BJ
    Respir Physiol Neurobiol; 2007 Nov; 159(2):211-8. PubMed ID: 17869591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Entrainment, instability, quasi-periodicity, and chaos in a compound neural oscillator.
    Matsugu M; Duffin J; Poon CS
    J Comput Neurosci; 1998 Mar; 5(1):35-51. PubMed ID: 9540048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Source of human ventilatory chaos: lessons from switching controlled mechanical ventilation to inspiratory pressure support in critically ill patients.
    Mangin L; Fiamma MN; Straus C; Derenne JP; Zelter M; Clerici C; Similowski T
    Respir Physiol Neurobiol; 2008 Apr; 161(2):189-96. PubMed ID: 18387347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling neural mechanisms for genesis of respiratory rhythm and pattern. II. Network models of the central respiratory pattern generator.
    Rybak IA; Paton JF; Schwaber JS
    J Neurophysiol; 1997 Apr; 77(4):2007-26. PubMed ID: 9114251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Respiratory pattern generator model using Ca++-induced Ca++ release in neurons shows both pacemaker and reciprocal network properties.
    Dunin-Barkowski WL; Escobar AL; Lovering AT; Orem JM
    Biol Cybern; 2003 Oct; 89(4):274-88. PubMed ID: 14605892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimized symbolic dynamics approach for the analysis of the respiratory pattern.
    Caminal P; Vallverdú M; Giraldo B; Benito S; Vázquez G; Voss A
    IEEE Trans Biomed Eng; 2005 Nov; 52(11):1832-9. PubMed ID: 16285386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling neural mechanisms for genesis of respiratory rhythm and pattern. I. Models of respiratory neurons.
    Rybak IA; Paton JF; Schwaber JS
    J Neurophysiol; 1997 Apr; 77(4):1994-2006. PubMed ID: 9114250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive targeting of chaotic response in periodically stimulated neural systems.
    Gupta K; Singh HP; Biswal B; Ramaswamy R
    Chaos; 2006 Jun; 16(2):023116. PubMed ID: 16822019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of pulmonary receptors on respiratory drive in a rabbit model of pulmonary emphysema.
    Dallak MA; Pirie LJ; Davies A
    Respir Physiol Neurobiol; 2007 Apr; 156(1):33-9. PubMed ID: 16971190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional consequences of model complexity in rhythmic systems: I. Systematic reduction of a bursting neuron model.
    Sorensen ME; DeWeerth SP
    J Neural Eng; 2007 Sep; 4(3):179-88. PubMed ID: 17873419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From swimming to walking: a single basic network for two different behaviors.
    Bem T; Cabelguen JM; Ekeberg O; Grillner S
    Biol Cybern; 2003 Feb; 88(2):79-90. PubMed ID: 12567223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-dimensional variation of bursting properties in a silicon-neuron half-center oscillator.
    Simoni MF; DeWeerth SP
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):281-9. PubMed ID: 17009487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative performance of linear and nonlinear neural networks to predict irregular breathing.
    Murphy MJ; Dieterich S
    Phys Med Biol; 2006 Nov; 51(22):5903-14. PubMed ID: 17068372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogeny of vertebrate respiratory rhythm generators: the Oscillator Homology Hypothesis.
    Wilson RJ; Vasilakos K; Remmers JE
    Respir Physiol Neurobiol; 2006 Nov; 154(1-2):47-60. PubMed ID: 16750658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ancient gill and lung oscillators may generate the respiratory rhythm of frogs and rats.
    Vasilakos K; Wilson RJ; Kimura N; Remmers JE
    J Neurobiol; 2005 Feb; 62(3):369-85. PubMed ID: 15551345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional consequences of model complexity in rhythmic systems: II. Systems performance of model and hybrid oscillators.
    Sorensen ME; DeWeerth SP
    J Neural Eng; 2007 Sep; 4(3):189-96. PubMed ID: 17873420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implications of noise and neural heterogeneity for vestibulo-ocular reflex fidelity.
    Hospedales TM; van Rossum MC; Graham BP; Dutia MB
    Neural Comput; 2008 Mar; 20(3):756-78. PubMed ID: 18045014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatiotemporal activity patterns during respiratory rhythmogenesis in the rat ventrolateral medulla.
    Fisher JA; Marchenko VA; Yodh AG; Rogers RF
    J Neurophysiol; 2006 Mar; 95(3):1982-91. PubMed ID: 16339002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.