BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 16143645)

  • 1. The direct physiological effects of mitoK(ATP) opening on heart mitochondria.
    Costa AD; Quinlan CL; Andrukhiv A; West IC; Jabůrek M; Garlid KD
    Am J Physiol Heart Circ Physiol; 2006 Jan; 290(1):H406-15. PubMed ID: 16143645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opening mitoKATP increases superoxide generation from complex I of the electron transport chain.
    Andrukhiv A; Costa AD; West IC; Garlid KD
    Am J Physiol Heart Circ Physiol; 2006 Nov; 291(5):H2067-74. PubMed ID: 16798828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of ischaemic preconditioning, diazoxide and 5-hydroxydecanoate on rat heart mitochondrial volume and respiration.
    Lim KH; Javadov SA; Das M; Clarke SJ; Suleiman MS; Halestrap AP
    J Physiol; 2002 Dec; 545(3):961-74. PubMed ID: 12482899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Respiratory uncoupling by increased H(+) or K(+) flux is beneficial for heart mitochondrial turnover of reactive oxygen species but not for permeability transition.
    Morota S; Piel S; Hansson MJ
    BMC Cell Biol; 2013 Sep; 14():40. PubMed ID: 24053891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased potassium conductance of brain mitochondria induces resistance to permeability transition by enhancing matrix volume.
    Hansson MJ; Morota S; Teilum M; Mattiasson G; Uchino H; Elmér E
    J Biol Chem; 2010 Jan; 285(1):741-50. PubMed ID: 19880514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and properties of a novel intracellular (mitochondrial) ATP-sensitive potassium channel in brain.
    Bajgar R; Seetharaman S; Kowaltowski AJ; Garlid KD; Paucek P
    J Biol Chem; 2001 Sep; 276(36):33369-74. PubMed ID: 11441006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. K+-independent actions of diazoxide question the role of inner membrane KATP channels in mitochondrial cytoprotective signaling.
    Dröse S; Brandt U; Hanley PJ
    J Biol Chem; 2006 Aug; 281(33):23733-9. PubMed ID: 16709571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lack of manifestations of diazoxide/5-hydroxydecanoate-sensitive KATP channel in rat brain nonsynaptosomal mitochondria.
    Brustovetsky T; Shalbuyeva N; Brustovetsky N
    J Physiol; 2005 Oct; 568(Pt 1):47-59. PubMed ID: 16051627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial K+ channels are involved in ischemic postconditioning in rat hearts.
    Jin C; Wu J; Watanabe M; Okada T; Iesaki T
    J Physiol Sci; 2012 Jul; 62(4):325-32. PubMed ID: 22528048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacological and physiological stimuli do not promote Ca(2+)-sensitive K+ channel activity in isolated heart mitochondria.
    Cancherini DV; Queliconi BB; Kowaltowski AJ
    Cardiovasc Res; 2007 Mar; 73(4):720-8. PubMed ID: 17208207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial Ca2+-activated K+ channels in cardiac myocytes: a mechanism of the cardioprotective effect and modulation by protein kinase A.
    Sato T; Saito T; Saegusa N; Nakaya H
    Circulation; 2005 Jan; 111(2):198-203. PubMed ID: 15623543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opening of astrocytic mitochondrial ATP-sensitive potassium channels upregulates electrical coupling between hippocampal astrocytes in rat brain slices.
    Wang J; Li Z; Feng M; Ren K; Shen G; Zhao C; Jin X; Jiang K
    PLoS One; 2013; 8(2):e56605. PubMed ID: 23418587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial ATP-sensitive potassium channels inhibit apoptosis induced by oxidative stress in cardiac cells.
    Akao M; Ohler A; O'Rourke B; Marbán E
    Circ Res; 2001 Jun; 88(12):1267-75. PubMed ID: 11420303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of ATP-sensitive potassium channel activators diazoxide and BMS-191095 on membrane potential and reactive oxygen species production in isolated piglet mitochondria.
    Busija DW; Katakam P; Rajapakse NC; Kis B; Grover G; Domoki F; Bari F
    Brain Res Bull; 2005 Jul; 66(2):85-90. PubMed ID: 15982523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the rate of K(+) movement through potassium channels in isolated rat heart and liver mitochondria.
    Bednarczyk P; Barker GD; Halestrap AP
    Biochim Biophys Acta; 2008 Jun; 1777(6):540-8. PubMed ID: 18471430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP-sensitive K+ channel openers prevent Ca2+ overload in rat cardiac mitochondria.
    Holmuhamedov EL; Wang L; Terzic A
    J Physiol; 1999 Sep; 519 Pt 2(Pt 2):347-60. PubMed ID: 10457054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protection of cardiac mitochondria by diazoxide and protein kinase C: implications for ischemic preconditioning.
    Korge P; Honda HM; Weiss JN
    Proc Natl Acad Sci U S A; 2002 Mar; 99(5):3312-7. PubMed ID: 11867760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics and superoxide-induced activation of reconstituted myocardial mitochondrial ATP-sensitive potassium channels.
    Zhang DX; Chen YF; Campbell WB; Zou AP; Gross GJ; Li PL
    Circ Res; 2001 Dec; 89(12):1177-83. PubMed ID: 11739283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial K(ATP) channel as an end effector of cardioprotection during late preconditioning: triggering role of nitric oxide.
    Wang Y; Kudo M; Xu M; Ayub A; Ashraf M
    J Mol Cell Cardiol; 2001 Nov; 33(11):2037-46. PubMed ID: 11708847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Opening mitochondrial K(ATP) in the heart--what happens, and what does not happen.
    Garlid KD
    Basic Res Cardiol; 2000 Aug; 95(4):275-9. PubMed ID: 11005581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.