These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 16143718)

  • 41. Dependence of Plant Uptake and Diffusion of Polycyclic Aromatic Hydrocarbons on the Leaf Surface Morphology and Micro-structures of Cuticular Waxes.
    Li Q; Li Y; Zhu L; Xing B; Chen B
    Sci Rep; 2017 Apr; 7():46235. PubMed ID: 28393859
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rates of cuticular penetration of chelated Fe(III): role of humidity, concentration, adjuvants, temperature, and type of chelate.
    Schönherr J; Fernández V; Schreiber L
    J Agric Food Chem; 2005 Jun; 53(11):4484-92. PubMed ID: 15913315
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sorption in reconstituted waxes of homologous series of alcohol ethoxylates and n-alkyl esters and their effects on the mobility of 2,4-dichlorophenoxybutyric acid.
    Simánová E; Shi T; Schönherr J; Schreiber L
    Pest Manag Sci; 2005 Apr; 61(4):383-9. PubMed ID: 15751010
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantitative structure-property relationship study of n-octanol-water partition coefficients of some of diverse drugs using multiple linear regression.
    Ghasemi J; Saaidpour S
    Anal Chim Acta; 2007 Dec; 604(2):99-106. PubMed ID: 17996529
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Composition and seasonal variation of soluble cuticular waxes in Actinidia deliciosa leaves.
    Celano G; D'Auria M; Xiloyannis C; Mauriello G; Baldassarre M
    Nat Prod Res; 2006 Jul; 20(8):701-9. PubMed ID: 16753901
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chemical Composition and Water Permeability of Fruit and Leaf Cuticles of Olea europaea L.
    Huang H; Burghardt M; Schuster AC; Leide J; Lara I; Riederer M
    J Agric Food Chem; 2017 Oct; 65(40):8790-8797. PubMed ID: 28880084
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Asymmetric water transport in dense leaf cuticles and cuticle-inspired compositionally graded membranes.
    Kamtsikakis A; Baales J; Zeisler-Diehl VV; Vanhecke D; Zoppe JO; Schreiber L; Weder C
    Nat Commun; 2021 Feb; 12(1):1267. PubMed ID: 33627645
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Plant surface properties in chemical ecology.
    Müller C; Riederer M
    J Chem Ecol; 2005 Nov; 31(11):2621-51. PubMed ID: 16273432
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of accelerators on mobility of 14C-2,4-dichlorophenoxy butyric acid in plant cuticles depends on type and concentration of accelerator.
    Shi T; Simanova E; Schönherr J; Schreiber L
    J Agric Food Chem; 2005 Mar; 53(6):2207-12. PubMed ID: 15769158
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Increased cuticular wax deposition does not change residual foliar transpiration.
    Grünhofer P; Herzig L; Sent S; Zeisler-Diehl VV; Schreiber L
    Plant Cell Environ; 2022 Apr; 45(4):1157-1171. PubMed ID: 35102563
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Leaf cuticular lipids on the Shandong and Yukon ecotypes of saltwater cress, Eutrema salsugineum, and their response to water deficiency and impact on cuticle permeability.
    Xu X; Feng J; Lü S; Lohrey GT; An H; Zhou Y; Jenks MA
    Physiol Plant; 2014 Aug; 151(4):446-58. PubMed ID: 24215503
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Development of the cuticular wax during growth of Kalanchoe daigremontiana (Hamet et Perr. de la Bathie) leaves.
    Van Maarseveen C; Han H; Jetter R
    Plant Cell Environ; 2009 Jan; 32(1):73-81. PubMed ID: 19021882
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Visualization of micromorphology of leaf epicuticular waxes of the rubber tree Ficus elastica by electron microscopy.
    Kim KW
    Micron; 2008 Oct; 39(7):976-84. PubMed ID: 18037304
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cuticular wax composition of Salix varieties in relation to biomass productivity.
    Teece MA; Zengeya T; Volk TA; Smart LB
    Phytochemistry; 2008 Jan; 69(2):396-402. PubMed ID: 17900636
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Water permeability of isolated cuticular membranes: The effect of cuticular waxes on diffusion of water.
    Schönherr J
    Planta; 1976 Jan; 131(2):159-64. PubMed ID: 24424766
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ontogenetic variation in chemical and physical characteristics of adaxial apple leaf surfaces.
    Bringe K; Schumacher CF; Schmitz-Eiberger M; Steiner U; Oerke EC
    Phytochemistry; 2006 Jan; 67(2):161-70. PubMed ID: 16321411
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Studies on water transport through the sweet cherry fruit surface: IX. Comparing permeability in water uptake and transpiration.
    Beyer M; Lau S; Knoche M
    Planta; 2005 Jan; 220(3):474-85. PubMed ID: 15338307
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transport properties of the mung bean (Vigna radiata) non-aerial hypocotyl membrane: permselectivity to hydrophilic compounds.
    Aponte J; Baur P
    Pest Manag Sci; 2014 Jan; 70(1):148-55. PubMed ID: 23526781
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Plant epicuticular wax and drought resistance as well as its molecular biology].
    Li WQ; Zhang ZB; Li JJ
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Oct; 32(5):505-12. PubMed ID: 17075172
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluation of the "DSPM" model on a titania membrane: measurements of charged and uncharged solute retention, electrokinetic charge, pore size, and water permeability.
    Labbez C; Fievet P; Thomas F; Szymczyk A; Vidonne A; Foissy A; Pagetti P
    J Colloid Interface Sci; 2003 Jun; 262(1):200-11. PubMed ID: 16256596
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.