BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 16143996)

  • 1. Effects of ethyl and benzyl groups on the miscibility and properties of castor oil-based polyurethane/starch derivative semi-interpenetrating polymer networks.
    Cao X; Wang Y; Zhang L
    Macromol Biosci; 2005 Sep; 5(9):863-71. PubMed ID: 16143996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of molecular weight on the miscibility and properties of polyurethane/benzyl starch semi-interpenetrating polymer networks.
    Cao X; Zhang L
    Biomacromolecules; 2005; 6(2):671-7. PubMed ID: 15762628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential interpenetrating polymer networks produced from vegetable oil based polyurethane and poly(methyl methacrylate).
    Kong X; Narine SS
    Biomacromolecules; 2008 Aug; 9(8):2221-9. PubMed ID: 18624453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermosensitive transparent semi-interpenetrating polymer networks for wound dressing and cell adhesion control.
    Reddy TT; Kano A; Maruyama A; Hadano M; Takahara A
    Biomacromolecules; 2008 Apr; 9(4):1313-21. PubMed ID: 18355026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semi-interpenetrating polymer networks prepared from castor oil-based waterborne polyurethanes and carboxymethyl chitosan.
    Zhang W; Deng H; Xia L; Shen L; Zhang C; Lu Q; Sun S
    Carbohydr Polym; 2021 Mar; 256():117507. PubMed ID: 33483029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New hybrid latexes from a soybean oil-based waterborne polyurethane and acrylics via emulsion polymerization.
    Lu Y; Larock RC
    Biomacromolecules; 2007 Oct; 8(10):3108-14. PubMed ID: 17877401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soybean-oil-based waterborne polyurethane dispersions: effects of polyol functionality and hard segment content on properties.
    Lu Y; Larock RC
    Biomacromolecules; 2008 Nov; 9(11):3332-40. PubMed ID: 18937404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of biocompatible interpenetrating polymer networks containing a sulfobetaine-based polymer and a segmented polyurethane for protein resistance.
    Chang Y; Chen S; Yu Q; Zhang Z; Bernards M; Jiang S
    Biomacromolecules; 2007 Jan; 8(1):122-7. PubMed ID: 17206797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane.
    Cao X; Dong H; Li CM
    Biomacromolecules; 2007 Mar; 8(3):899-904. PubMed ID: 17315923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonfouling biomaterials based on polyethylene oxide-containing amphiphilic triblock copolymers as surface modifying additives: solid state structure of PEO-copolymer/polyurethane blends.
    Tan J; Brash JL
    J Biomed Mater Res A; 2008 Jun; 85(4):862-72. PubMed ID: 17896775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, characterization and biocompatibility of biodegradable elastomeric poly(ether-ester urethane)s Based on Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(ethylene glycol) via melting polymerization.
    Li Z; Yang X; Wu L; Chen Z; Lin Y; Xu K; Chen GQ
    J Biomater Sci Polym Ed; 2009; 20(9):1179-202. PubMed ID: 19520007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of the biopolymer castor oil with free isocyanate groups to be applied as bioadhesive.
    Ferreira P; Pereira R; Coelho JF; Silva AF; Gil MH
    Int J Biol Macromol; 2007 Jan; 40(2):144-52. PubMed ID: 16893565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructural imaging and characterization of the mechanical, chemical, thermal, and swelling properties of starch-chitosan blend films.
    Mathew S; Brahmakumar M; Abraham TE
    Biopolymers; 2006 Jun; 82(2):176-87. PubMed ID: 16489584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of plasticizers on properties of pregelatinised starch acetate (Amprac 01) free films.
    Bonacucina G; Di Martino P; Piombetti M; Colombo A; Roversi F; Palmieri GF
    Int J Pharm; 2006 Apr; 313(1-2):72-7. PubMed ID: 16540269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradability and mechanical properties of starch films from Andean crops.
    Torres FG; Troncoso OP; Torres C; Díaz DA; Amaya E
    Int J Biol Macromol; 2011 May; 48(4):603-6. PubMed ID: 21300087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved tensile strength of glycerol-plasticized gluten bioplastic containing hydrophobic liquids.
    Song Y; Zheng Q
    Bioresour Technol; 2008 Nov; 99(16):7665-71. PubMed ID: 18337091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrospun gelatin/polyurethane blended nanofibers for wound healing.
    Kim SE; Heo DN; Lee JB; Kim JR; Park SH; Jeon SH; Kwon IK
    Biomed Mater; 2009 Aug; 4(4):044106. PubMed ID: 19671952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Films of starch and poly(butylene adipate co-terephthalate) added of soybean oil (SO) and Tween 80.
    Brandelero RP; Grossmann MV; Yamashita F
    Carbohydr Polym; 2012 Nov; 90(4):1452-60. PubMed ID: 22944402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short glass fiber-reinforced composite with a semi-interpenetrating polymer network matrix for temporary crowns and bridges.
    Garoushi SK; Vallittu PK; Lassila LV
    J Contemp Dent Pract; 2008 Jan; 9(1):14-21. PubMed ID: 18176644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of poly(ethylene glycol)-diacrylate macromer polymerization within a multicomponent semi-interpenetrating polymer network system.
    Witte RP; Blake AJ; Palmer C; Kao WJ
    J Biomed Mater Res A; 2004 Dec; 71(3):508-18. PubMed ID: 15386483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.