These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 16144404)
1. Density functional investigation of the Mitsunobu reaction. Schenk S; Weston J; Anders E J Am Chem Soc; 2005 Sep; 127(36):12566-76. PubMed ID: 16144404 [TBL] [Abstract][Full Text] [Related]
2. Mechanisms of formation of 8-oxoguanine due to reactions of one and two OH* radicals and the H2O2 molecule with guanine: A quantum computational study. Jena NR; Mishra PC J Phys Chem B; 2005 Jul; 109(29):14205-18. PubMed ID: 16852784 [TBL] [Abstract][Full Text] [Related]
3. Phosphine-ligated induced formation of thallium(I) full Pt3TlPt3 sandwich versus "open-face" TlPt3 sandwich with triangular Pt3(mu2-CO)3(PR3)3 units: synthesis and structural/spectroscopic analysis of triphenylphosphine [(mu3-Tl)Pt3(mu2-CO)3(PPh3)3]+ and its (mu3-AuPPh3)Pt3 analogue. de Silva N; Fry CG; Dahl LF Dalton Trans; 2006 Feb; (8):1051-9. PubMed ID: 16474891 [TBL] [Abstract][Full Text] [Related]
4. Separation-friendly Mitsunobu reactions: a microcosm of recent developments in separation strategies. Dandapani S; Curran DP Chemistry; 2004 Jul; 10(13):3130-8. PubMed ID: 15224321 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of a new enantiomerically pure P-chiral phosphine and its use in probing the mechanism of the Mitsunobu reaction. Watanabe T; Gridnev ID; Imamoto T Chirality; 2000 Jun; 12(5-6):346-51. PubMed ID: 10824150 [TBL] [Abstract][Full Text] [Related]
6. Catalytic phosphorus(V)-mediated nucleophilic substitution reactions: development of a catalytic Appel reaction. Denton RM; An J; Adeniran B; Blake AJ; Lewis W; Poulton AM J Org Chem; 2011 Aug; 76(16):6749-67. PubMed ID: 21744876 [TBL] [Abstract][Full Text] [Related]
7. Thermal and photocontrol of the equilibrium between a 2-phosphinoazobenzene and an inner phosphonium salt. Yamamura M; Kano N; Kawashima T J Am Chem Soc; 2005 Aug; 127(34):11954-5. PubMed ID: 16117530 [TBL] [Abstract][Full Text] [Related]
8. Hydrotrioxides rather than cyclic tetraoxides (tetraoxolanes) as the primary reaction intermediates in the low-temperature ozonation of aldehydes. The case of benzaldehyde. Cerkovnik J; Plesnicar B; Koller J; Tuttle T J Org Chem; 2009 Jan; 74(1):96-101. PubMed ID: 19007299 [TBL] [Abstract][Full Text] [Related]
9. Unusual oxidation of phosphines employing water as the oxygen atom source and tris(benzene-1,2-dithiolate)molybdenum(VI) as the oxidant. A functional molybdenum hydroxylase analogue system. Cervilla A; Pérez-Pla F; Llopis E; Piles M Inorg Chem; 2006 Sep; 45(18):7357-66. PubMed ID: 16933938 [TBL] [Abstract][Full Text] [Related]
10. Mechanistic investigation of the staudinger ligation. Lin FL; Hoyt HM; van Halbeek H; Bergman RG; Bertozzi CR J Am Chem Soc; 2005 Mar; 127(8):2686-95. PubMed ID: 15725026 [TBL] [Abstract][Full Text] [Related]
11. Formation of a phosphine-phosphinite ligand in RhCl(PRR'2)[P,P-R'(R)POCH2P(CH2OH)2] and R'H from cis-RhCl(PRR'2)2[P(CH2OH)3] via P-C bond cleavage. Lorenzini F; Patrick BO; James BR Inorg Chem; 2007 Oct; 46(21):8998-9002. PubMed ID: 17867681 [TBL] [Abstract][Full Text] [Related]
12. The lithiation and acyl transfer reactions of phosphine oxides, sulfides and boranes in the synthesis of cyclopropanes. Clarke C; Fox DJ; Pedersen DS; Warren S Org Biomol Chem; 2009 Apr; 7(7):1329-36. PubMed ID: 19300817 [TBL] [Abstract][Full Text] [Related]
13. Phosphine-dependent stereoselectivity in the mitsunobu cyclodehydration of 1,2-diols: stereodivergent approach to triaryl-substituted epoxides. García-Delgado N; Riera A; Verdaguer X Org Lett; 2007 Feb; 9(4):635-8. PubMed ID: 17253704 [TBL] [Abstract][Full Text] [Related]
14. Enamides and enecarbamates as nucleophiles in stereoselective C-C and C-N bond-forming reactions. Matsubara R; Kobayashi S Acc Chem Res; 2008 Feb; 41(2):292-301. PubMed ID: 18281949 [TBL] [Abstract][Full Text] [Related]
15. New insights in the formation of thioxophosphine: a quantum chemical study. Viana RB; Pimentel AS J Chem Phys; 2007 Nov; 127(20):204306. PubMed ID: 18052426 [TBL] [Abstract][Full Text] [Related]
16. Alpha-monodeuterated benzyl alcohols and phosphobetaines from reactions of aromatic aldehydes with a water/D2O-soluble phosphine. Moiseev DV; James BR; Hu TQ Inorg Chem; 2006 Dec; 45(25):10338-46. PubMed ID: 17140243 [TBL] [Abstract][Full Text] [Related]
17. Theoretical analysis of gas-phase front-side attack identity S(N)2(C) and S(N)2(Si) reactions with retention of configuration. Yang ZZ; Ding YL; Zhao DX J Phys Chem A; 2009 May; 113(18):5432-45. PubMed ID: 19354223 [TBL] [Abstract][Full Text] [Related]
18. Development of a redox-free Mitsunobu reaction exploiting phosphine oxides as precursors to dioxyphosphoranes. Tang X; Chapman C; Whiting M; Denton R Chem Commun (Camb); 2014 Jul; 50(55):7340-3. PubMed ID: 24871529 [TBL] [Abstract][Full Text] [Related]
19. Light, medium, and heavy fluorous triarylphosphines exhibit comparable reactivities to triphenylphosphine in typical reactions of triarylphosphines. Curran DP; Wang X; Zhang Q J Org Chem; 2005 Apr; 70(9):3716-9. PubMed ID: 15845013 [TBL] [Abstract][Full Text] [Related]
20. Density functional studies on thromboxane biosynthesis: mechanism and role of the heme-thiolate system. Yanai TK; Mori S Chem Asian J; 2008 Nov; 3(11):1900-11. PubMed ID: 18844316 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]