BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

405 related articles for article (PubMed ID: 16145075)

  • 1. Improvement in laboratory diagnosis of wound botulism and tetanus among injecting illicit-drug users by use of real-time PCR assays for neurotoxin gene fragments.
    Akbulut D; Grant KA; McLauchlin J
    J Clin Microbiol; 2005 Sep; 43(9):4342-8. PubMed ID: 16145075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First case of type E wound botulism diagnosed using real-time PCR.
    Artin I; Björkman P; Cronqvist J; Rådström P; Holst E
    J Clin Microbiol; 2007 Nov; 45(11):3589-94. PubMed ID: 17881556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and application of Real-Time PCR assays to detect fragments of the Clostridium botulinum types A, B, and E neurotoxin genes for investigation of human foodborne and infant botulism.
    Akbulut D; Grant KA; McLauchlin J
    Foodborne Pathog Dis; 2004; 1(4):247-57. PubMed ID: 15992287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clostridial neurotoxins.
    Goonetilleke A; Harris JB
    J Neurol Neurosurg Psychiatry; 2004 Sep; 75 Suppl 3(Suppl 3):iii35-9. PubMed ID: 15316043
    [No Abstract]   [Full Text] [Related]  

  • 5. BotR/A and TetR are alternative RNA polymerase sigma factors controlling the expression of the neurotoxin and associated protein genes in Clostridium botulinum type A and Clostridium tetani.
    Raffestin S; Dupuy B; Marvaud JC; Popoff MR
    Mol Microbiol; 2005 Jan; 55(1):235-49. PubMed ID: 15612931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulatory Networks Controlling Neurotoxin Synthesis in
    Popoff MR; Brüggemann H
    Toxins (Basel); 2022 May; 14(6):. PubMed ID: 35737025
    [No Abstract]   [Full Text] [Related]  

  • 7. Diversity of the Genomes and Neurotoxins of Strains of
    Brunt J; van Vliet AHM; Carter AT; Stringer SC; Amar C; Grant KA; Godbole G; Peck MW
    Toxins (Basel); 2020 Sep; 12(9):. PubMed ID: 32932818
    [No Abstract]   [Full Text] [Related]  

  • 8. Development of real-time PCR tests for detecting botulinum neurotoxins A, B, E, F producing Clostridium botulinum, Clostridium baratii and Clostridium butyricum.
    Fach P; Micheau P; Mazuet C; Perelle S; Popoff M
    J Appl Microbiol; 2009 Aug; 107(2):465-73. PubMed ID: 19291235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative real-time PCR for detection of the neurotoxin gene of Clostridium botulinum type B in equine and bovine samples.
    Johnson AL; Sweeney RW; McAdams SC; Whitlock RH
    Vet J; 2012 Oct; 194(1):118-20. PubMed ID: 22537645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of toxin synthesis in Clostridium botulinum and Clostridium tetani.
    Connan C; Denève C; Mazuet C; Popoff MR
    Toxicon; 2013 Dec; 75():90-100. PubMed ID: 23769754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association of toxin-producing Clostridium botulinum with the macroalga Cladophora in the Great Lakes.
    Chun CL; Ochsner U; Byappanahalli MN; Whitman RL; Tepp WH; Lin G; Johnson EA; Peller J; Sadowsky MJ
    Environ Sci Technol; 2013 Mar; 47(6):2587-94. PubMed ID: 23421373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Botulism and tetanus: selected epidemiologic and microbiologic aspects.
    Dowell VR
    Rev Infect Dis; 1984; 6 Suppl 1():S202-7. PubMed ID: 6372030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laboratory diagnostics of botulism.
    Lindström M; Korkeala H
    Clin Microbiol Rev; 2006 Apr; 19(2):298-314. PubMed ID: 16614251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity of mouse bioassay in clinical wound botulism.
    Wheeler C; Inami G; Mohle-Boetani J; Vugia D
    Clin Infect Dis; 2009 Jun; 48(12):1669-73. PubMed ID: 19435438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time PCR detection of the nontoxic nonhemagglutinin gene as a rapid screening method for bacterial isolates harboring the botulinum neurotoxin (A-G) gene complex.
    Raphael BH; Andreadis JD
    J Microbiol Methods; 2007 Dec; 71(3):343-6. PubMed ID: 17961766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbiologic characterization and antimicrobial susceptibility of Clostridium tetani isolated from wounds of patients with clinically diagnosed tetanus.
    Campbell JI; Lam TM; Huynh TL; To SD; Tran TT; Nguyen VM; Le TS; Nguyen vV; Parry C; Farrar JJ; Tran TH; Baker S
    Am J Trop Med Hyg; 2009 May; 80(5):827-31. PubMed ID: 19407132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-tube nested PCR assay for the detection of avian botulism in cecal contents of chickens.
    Jang I; Lee JI; Kwon YK; Kang MS; Kim HR; Park JY; Lee SH; Lee HS; Bae YC
    Anaerobe; 2015 Oct; 35(Pt B):48-53. PubMed ID: 26159405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time PCR for Clostridium botulinum type C neurotoxin (BoNTC) gene, also covering a chimeric C/D sequence--application on outbreaks of botulism in poultry.
    Lindberg A; Skarin H; Knutsson R; Blomqvist G; Båverud V
    Vet Microbiol; 2010 Nov; 146(1-2):118-23. PubMed ID: 20537470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the D/C mosaic neurotoxin produced by Clostridium botulinum associated with bovine botulism in Japan.
    Nakamura K; Kohda T; Umeda K; Yamamoto H; Mukamoto M; Kozaki S
    Vet Microbiol; 2010 Jan; 140(1-2):147-54. PubMed ID: 19720474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wound botulism in the UK and Ireland.
    Brett MM; Hallas G; Mpamugo O
    J Med Microbiol; 2004 Jun; 53(Pt 6):555-561. PubMed ID: 15150338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.