These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 16145178)

  • 1. Wide dissemination of a carbapenemase plasmid among gram-negative bacteria: implications of the variable phenotype.
    Espedido B; Iredell J; Thomas L; Zelynski A
    J Clin Microbiol; 2005 Sep; 43(9):4918-9. PubMed ID: 16145178
    [No Abstract]   [Full Text] [Related]  

  • 2. Accumulation of carbapenemase-producing Gram-negative bacteria in a single patient linked to the acquisition of multiple carbapenemase producers and to the in vivo transfer of a plasmid encoding VIM-1.
    Drieux L; Bourgeois-Nicolaos N; Cremniter J; Lawrence C; Jarlier V; Doucet-Populaire F; Sougakoff W
    Int J Antimicrob Agents; 2011 Aug; 38(2):179-80. PubMed ID: 21570257
    [No Abstract]   [Full Text] [Related]  

  • 3. Plasmid-mediated transfer of the bla(NDM-1) gene in Gram-negative rods.
    Potron A; Poirel L; Nordmann P
    FEMS Microbiol Lett; 2011 Nov; 324(2):111-6. PubMed ID: 22092811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emergence of carbapenemases in Gram-negative bacteria in Hamburg, Germany.
    Hentschke M; Goritzka V; Campos CB; Merkel P; Ilchmann C; Lellek H; Scherpe S; Aepfelbacher M; Rohde H
    Diagn Microbiol Infect Dis; 2011 Nov; 71(3):312-5. PubMed ID: 21899979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental dissemination of NDM-1: time to act sensibly.
    Shahid M
    Lancet Infect Dis; 2011 May; 11(5):334-5. PubMed ID: 21478055
    [No Abstract]   [Full Text] [Related]  

  • 6. Detection of plasmid-mediated AmpC in Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis.
    Tan TY; Ng SY; Teo L; Koh Y; Teok CH
    J Clin Pathol; 2008 May; 61(5):642-4. PubMed ID: 18057079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organic and conventional fruits and vegetables contain equivalent counts of Gram-negative bacteria expressing resistance to antibacterial agents.
    Ruimy R; Brisabois A; Bernede C; Skurnik D; Barnat S; Arlet G; Momcilovic S; Elbaz S; Moury F; Vibet MA; Courvalin P; Guillemot D; Andremont A
    Environ Microbiol; 2010 Mar; 12(3):608-15. PubMed ID: 19919536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. IMP-type metallo-β-lactamases in Gram-negative bacilli: distribution, phylogeny, and association with integrons.
    Zhao WH; Hu ZQ
    Crit Rev Microbiol; 2011 Aug; 37(3):214-26. PubMed ID: 21707466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro activity of ceftaroline (PPI-0903M, T-91825) against bacteria with defined resistance mechanisms and phenotypes.
    Mushtaq S; Warner M; Ge Y; Kaniga K; Livermore DM
    J Antimicrob Chemother; 2007 Aug; 60(2):300-11. PubMed ID: 17548456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Current aspects of bacterial resistance to antibiotics].
    Brisson-Noel A; Trieu-Cuot P; Sougakoff W; Courvalin P
    Ann Biol Clin (Paris); 1989; 47(2):98-101. PubMed ID: 2660637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Broad-spectrum beta-lactamases in Gram-negative bacteria].
    Sundsfjord A; Simonsen GS; Haldorsen B; Lundblad EW; Samuelsen O
    Tidsskr Nor Laegeforen; 2008 Dec; 128(23):2741-5. PubMed ID: 19079424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High diversity of extended-spectrum beta-lactamases among clinical isolates of Enterobacteriaceae from Portugal.
    Machado E; Coque TM; Cantón R; Novais A; Sousa JC; Baquero F; Peixe L;
    J Antimicrob Chemother; 2007 Dec; 60(6):1370-4. PubMed ID: 17913717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conjugative gene transfer in the gastrointestinal environment.
    Licht TR; Wilcks A
    Adv Appl Microbiol; 2006; 58():77-95. PubMed ID: 16509443
    [No Abstract]   [Full Text] [Related]  

  • 14. Activity of meropenem as serine carbapenemases evolve in US Medical Centers: monitoring report from the MYSTIC Program (2006).
    Rhomberg PR; Deshpande LM; Kirby JT; Jones RN
    Diagn Microbiol Infect Dis; 2007 Dec; 59(4):425-32. PubMed ID: 17662557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zoo animals as reservoirs of gram-negative bacteria harboring integrons and antimicrobial resistance genes.
    Ahmed AM; Motoi Y; Sato M; Maruyama A; Watanabe H; Fukumoto Y; Shimamoto T
    Appl Environ Microbiol; 2007 Oct; 73(20):6686-90. PubMed ID: 17720829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular characterisation of the metallo-beta-lactamase genes in imipenem-resistant Gram-negative bacteria from a university hospital in southern Taiwan.
    Lee MF; Peng CF; Hsu HJ; Chen YH
    Int J Antimicrob Agents; 2008 Dec; 32(6):475-80. PubMed ID: 18804966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging resistance in Gram-negative pathogens and implications for clinical practice.
    Cantón R; Lumb J
    Future Microbiol; 2011 Jan; 6(1):19-22. PubMed ID: 21162632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ACT-3, a novel plasmid-encoded class C beta-lactamase in a Klebsiella pneumoniae isolate from China.
    Chen Y; Cheng J; Wang Q; Ye Y; Li JB; Zhang XJ
    Int J Antimicrob Agents; 2009 Jan; 33(1):95-6. PubMed ID: 18789849
    [No Abstract]   [Full Text] [Related]  

  • 19. The emergence and implications of metallo-beta-lactamases in Gram-negative bacteria.
    Walsh TR
    Clin Microbiol Infect; 2005 Nov; 11 Suppl 6():2-9. PubMed ID: 16209700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minor extended-spectrum beta-lactamases.
    Naas T; Poirel L; Nordmann P
    Clin Microbiol Infect; 2008 Jan; 14 Suppl 1():42-52. PubMed ID: 18154527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.