BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 16146651)

  • 1. Inhibition of zeaxanthin epoxidase activity by cadmium ions in higher plants.
    Latowski D; Kruk J; Strzałka K
    J Inorg Biochem; 2005 Oct; 99(10):2081-7. PubMed ID: 16146651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amino sugars: new inhibitors of zeaxanthin epoxidase, a violaxanthin cycle enzyme.
    Latowski D; Banaś AK; Strzałka K; Gabryś H
    J Plant Physiol; 2007 Mar; 164(3):231-7. PubMed ID: 17074410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant lipocalins: violaxanthin de-epoxidase and zeaxanthin epoxidase.
    Hieber AD; Bugos RC; Yamamoto HY
    Biochim Biophys Acta; 2000 Oct; 1482(1-2):84-91. PubMed ID: 11058750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of violaxanthin de-epoxidase gene alleviates photoinhibition of PSII and PSI in tomato during high light and chilling stress.
    Han H; Gao S; Li B; Dong XC; Feng HL; Meng QW
    J Plant Physiol; 2010 Feb; 167(3):176-83. PubMed ID: 19767125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of violaxanthin de-epoxidation by violaxanthin de-epoxidase, a xanthophyll cycle enzyme, is regulated by membrane fluidity in model lipid bilayers.
    Latowski D; Kruk J; Burda K; Skrzynecka-Jaskier M; Kostecka-Gugała A; Strzałka K
    Eur J Biochem; 2002 Sep; 269(18):4656-65. PubMed ID: 12230579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Violaxanthin de-epoxidase.
    Rockholm DC; Yamamoto HY
    Plant Physiol; 1996 Feb; 110(2):697-703. PubMed ID: 8742341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mathematical model describing kinetics of conversion of violaxanthin to zeaxanthin via intermediate antheraxanthin by the xanthophyll cycle enzyme violaxanthin de-epoxidase.
    Latowski D; Burda K; Strzałka K
    J Theor Biol; 2000 Oct; 206(4):507-14. PubMed ID: 11013111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein redox regulation in the thylakoid lumen: the importance of disulfide bonds for violaxanthin de-epoxidase.
    Simionato D; Basso S; Zaffagnini M; Lana T; Marzotto F; Trost P; Morosinotto T
    FEBS Lett; 2015 Apr; 589(8):919-23. PubMed ID: 25747136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient heterologous transformation of Chlamydomonas reinhardtii npq2 mutant with the zeaxanthin epoxidase gene isolated and characterized from Chlorella zofingiensis.
    Couso I; Cordero BF; Vargas MÁ; Rodríguez H
    Mar Drugs; 2012 Sep; 10(9):1955-1976. PubMed ID: 23118714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo.
    Müller-Moulé P; Conklin PL; Niyogi KK
    Plant Physiol; 2002 Mar; 128(3):970-7. PubMed ID: 11891252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into the binding mechanism of ascorbic acid and violaxanthin with violaxanthin de-epoxidase (VDE) and chlorophycean violaxanthin de-epoxidase (CVDE) enzymes.
    Biswal S; Gupta PSS; Panda SK; Bhat HR; Rana MK
    Photosynth Res; 2023 Jun; 156(3):337-354. PubMed ID: 36847893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Violaxanthin de-epoxidase, the xanthophyll cycle enzyme, requires lipid inverted hexagonal structures for its activity.
    Latowski D; Akerlund HE; Strzałka K
    Biochemistry; 2004 Apr; 43(15):4417-20. PubMed ID: 15078086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of zeaxanthin epoxidase gene enhances the sensitivity of tomato PSII photoinhibition to high light and chilling stress.
    Wang N; Fang W; Han H; Sui N; Li B; Meng QW
    Physiol Plant; 2008 Mar; 132(3):384-96. PubMed ID: 18275469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple Effects of Dithiothreitol on Nonphotochemical Fluorescence Quenching in Intact Chloroplasts (Influence on Violaxanthin De-epoxidase and Ascorbate Peroxidase Activity).
    Neubauer C
    Plant Physiol; 1993 Oct; 103(2):575-583. PubMed ID: 12231962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antisense suppression of violaxanthin de-epoxidase in tobacco does not affect plant performance in controlled growth conditions.
    Chang SH; Bugos RC; Sun WH; Yamamoto HY
    Photosynth Res; 2000; 64(1):95-103. PubMed ID: 16228447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression and suppression of violaxanthin de-epoxidase affects the sensitivity of photosystem II photoinhibition to high light and chilling stress in transgenic tobacco.
    Gao S; Han H; Feng HL; Zhao SJ; Meng QW
    J Integr Plant Biol; 2010 Mar; 52(3):332-9. PubMed ID: 20377694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional characterization of the Gentiana lutea zeaxanthin epoxidase (GlZEP) promoter in transgenic tomato plants.
    Yang Q; Yuan D; Shi L; Capell T; Bai C; Wen N; Lu X; Sandmann G; Christou P; Zhu C
    Transgenic Res; 2012 Oct; 21(5):1043-56. PubMed ID: 22297392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary divergence of photoprotection in the green algal lineage: a plant-like violaxanthin de-epoxidase enzyme activates the xanthophyll cycle in the green alga Chlorella vulgaris modulating photoprotection.
    Girolomoni L; Bellamoli F; de la Cruz Valbuena G; Perozeni F; D'Andrea C; Cerullo G; Cazzaniga S; Ballottari M
    New Phytol; 2020 Oct; 228(1):136-150. PubMed ID: 32442330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane curvature stress controls the maximal conversion of violaxanthin to zeaxanthin in the violaxanthin cycle--influence of alpha-tocopherol, cetylethers, linolenic acid, and temperature.
    Szilágyi A; Sommarin M; Akerlund HE
    Biochim Biophys Acta; 2007 Sep; 1768(9):2310-8. PubMed ID: 17618598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional and structural characterization of domain truncated violaxanthin de-epoxidase.
    Hallin EI; Guo K; Åkerlund HE
    Physiol Plant; 2016 Aug; 157(4):414-21. PubMed ID: 26864799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.