BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 16146651)

  • 21. The de-epoxidase and epoxidase reactions of Mantoniella squamata (Prasinophyceae) exhibit different substrate-specific reaction kinetics compared to spinach.
    Frommolt R; Goss R; Wilhelm C
    Planta; 2001 Jul; 213(3):446-56. PubMed ID: 11506368
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FAD is a further essential cofactor of the NAD(P)H and O2-dependent zeaxanthin-epoxidase.
    Büch K; Stransky H; Hager A
    FEBS Lett; 1995 Nov; 376(1-2):45-8. PubMed ID: 8521963
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Zeaxanthin epoxidation - an in vitro approach.
    Kuczyńska P; Latowski D; Niczyporuk S; Olchawa-Pajor M; Jahns P; Gruszecki WI; Strzałka K
    Acta Biochim Pol; 2012; 59(1):105-7. PubMed ID: 22428135
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New transgenic line of Arabidopsis thaliana with partly disabled zeaxanthin epoxidase activity displays changed carotenoid composition, xanthophyll cycle activity and non-photochemical quenching kinetics.
    Nowicka B; Strzalka W; Strzalka K
    J Plant Physiol; 2009 Jul; 166(10):1045-56. PubMed ID: 19278749
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Developmental expression of violaxanthin de-epoxidase in leaves of tobacco growing under high and low light.
    Bugos RC; Chang SH; Yamamoto HY
    Plant Physiol; 1999 Sep; 121(1):207-14. PubMed ID: 10482676
    [TBL] [Abstract][Full Text] [Related]  

  • 26. De-epoxidation of violaxanthin in the minor antenna proteins of photosystem II, LHCB4, LHCB5, and LHCB6.
    Wehner A; Grasses T; Jahns P
    J Biol Chem; 2006 Aug; 281(31):21924-21933. PubMed ID: 16754673
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Xanthophyll cycle enzymes are members of the lipocalin family, the first identified from plants.
    Bugos RC; Hieber AD; Yamamoto HY
    J Biol Chem; 1998 Jun; 273(25):15321-4. PubMed ID: 9624110
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct isolation of a functional violaxanthin cycle domain from thylakoid membranes of higher plants.
    Goss R; Greifenhagen A; Bergner J; Volke D; Hoffmann R; Wilhelm C; Schaller-Laudel S
    Planta; 2017 Apr; 245(4):793-806. PubMed ID: 28025675
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activation of violaxanthin cycle in darkness is a common response to different abiotic stresses: a case study in Pelvetia canaliculata.
    Fernández-Marín B; Míguez F; Becerril JM; García-Plazaola JI
    BMC Plant Biol; 2011 Dec; 11():181. PubMed ID: 22269024
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overexpression of violaxanthin de-epoxidase: properties of C-terminal deletions on activity and pH-dependent lipid binding.
    Hieber AD; Bugos RC; Verhoeven AS; Yamamoto HY
    Planta; 2002 Jan; 214(3):476-83. PubMed ID: 11855651
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidation.
    Römer S; Lübeck J; Kauder F; Steiger S; Adomat C; Sandmann G
    Metab Eng; 2002 Oct; 4(4):263-72. PubMed ID: 12646321
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamics of chromophore binding to Lhc proteins in vivo and in vitro during operation of the xanthophyll cycle.
    Morosinotto T; Baronio R; Bassi R
    J Biol Chem; 2002 Oct; 277(40):36913-20. PubMed ID: 12114527
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid inactivation of chloroplastic ascorbate peroxidase is responsible for oxidative modification to Rubisco in tomato (Lycopersicon esculentum) under cadmium stress.
    Liu KL; Shen L; Wang JQ; Sheng JP
    J Integr Plant Biol; 2008 Apr; 50(4):415-26. PubMed ID: 18713375
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A functional zeaxanthin epoxidase from red algae shedding light on the evolution of light-harvesting carotenoids and the xanthophyll cycle in photosynthetic eukaryotes.
    Dautermann O; Lohr M
    Plant J; 2017 Dec; 92(5):879-891. PubMed ID: 28949044
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Bioaccumulation of cadmium and zinc in tomato (Lycopersicon esculentum L.)].
    Sbartai H; Djebar MR; Sbartai I; Berrabbah H
    C R Biol; 2012 Sep; 335(9):585-93. PubMed ID: 23026089
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Violaxanthin de-epoxidase in etiolated leaves.
    Pfündel E; Strasser RJ
    Photosynth Res; 1988 Jan; 15(1):67-73. PubMed ID: 24430793
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Shedding light on the dark side of xanthophyll cycles.
    Fernández-Marín B; Roach T; Verhoeven A; García-Plazaola JI
    New Phytol; 2021 May; 230(4):1336-1344. PubMed ID: 33452715
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Abscisic acid biosynthesis in tomato: regulation of zeaxanthin epoxidase and 9-cis-epoxycarotenoid dioxygenase mRNAs by light/dark cycles, water stress and abscisic acid.
    Thompson AJ; Jackson AC; Parker RA; Morpeth DR; Burbidge A; Taylor IB
    Plant Mol Biol; 2000 Apr; 42(6):833-45. PubMed ID: 10890531
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of the compatible solute sucrose on thylakoid membrane organization and violaxanthin de-epoxidation.
    Goss R; Schwarz C; Matzner M; Wilhelm C
    Planta; 2021 Aug; 254(3):52. PubMed ID: 34392410
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acute exposure to UV-B sensitizes cucumber, tomato, and Arabidopsis plants to photooxidative stress by inhibiting thermal energy dissipation and antioxidant defense.
    Moon YR; Lee MH; Tovuu A; Lee CH; Chung BY; Park YI; Kim JH
    J Radiat Res; 2011; 52(2):238-48. PubMed ID: 21436613
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.