BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 16146732)

  • 1. Oxidative stress and apoptosis: a new treatment paradigm in cancer.
    Engel RH; Evens AM
    Front Biosci; 2006 Jan; 11():300-12. PubMed ID: 16146732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of arsenic trioxide-induced apoptosis in renal cell carcinoma cells by L-buthionine sulfoximine.
    Wu XX; Ogawa O; Kakehi Y
    Int J Oncol; 2004 Jun; 24(6):1489-97. PubMed ID: 15138592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential augmentative effects of buthionine sulfoximine and ascorbic acid in As2O3-induced ovarian cancer cell death: oxidative stress-independent and -dependent cytotoxic potentiation.
    Ong PS; Chan SY; Ho PC
    Int J Oncol; 2011 Jun; 38(6):1731-9. PubMed ID: 21455570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Study on the resveratrol and arsenic trioxide combination induced apoptosis and its mechanism on lung adenocarcinoma cells].
    Gu S; Chen C; Jiang X; Zhang Z
    Wei Sheng Yan Jiu; 2016 Jan; 45(1):87-92. PubMed ID: 26987203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenic trioxide induces human pulmonary fibroblast cell death via increasing ROS levels and GSH depletion.
    You BR; Park WH
    Oncol Rep; 2012 Aug; 28(2):749-57. PubMed ID: 22684917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combination treatment with arsenic trioxide and sulindac enhances apoptotic cell death in lung cancer cells via activation of oxidative stress and mitogen-activated protein kinases.
    Park JH; Kim EJ; Jang HY; Shim H; Lee KK; Jo HJ; Kim HJ; Yang SH; Jeong ET; Kim HR
    Oncol Rep; 2008 Aug; 20(2):379-84. PubMed ID: 18636201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Arsenic trioxide combined with buthionine sulfoximine enhances apoptosis in multidrug-resistant human leukemia K562/ADM cells in vitro].
    Wang T; Ma LM; Zhang HP; Wang HW; Yang LH; Qiao ZH
    Zhonghua Zhong Liu Za Zhi; 2008 Mar; 30(3):188-91. PubMed ID: 18756933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenic trioxide-induced apoptosis through oxidative stress in cells of colon cancer cell lines.
    Nakagawa Y; Akao Y; Morikawa H; Hirata I; Katsu K; Naoe T; Ohishi N; Yagi K
    Life Sci; 2002 Mar; 70(19):2253-69. PubMed ID: 12005185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimony-trioxide- and arsenic-trioxide-induced apoptosis in myelogenic and lymphatic cell lines, recruitment of caspases, and loss of mitochondrial membrane potential are enhanced by modulators of the cellular glutathione redox system.
    Lösler S; Schlief S; Kneifel C; Thiel E; Schrezenmeier H; Rojewski MT
    Ann Hematol; 2009 Nov; 88(11):1047-58. PubMed ID: 19301004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic trioxide-induced apoptosis and its enhancement by buthionine sulfoximine in hepatocellular carcinoma cell lines.
    Kito M; Akao Y; Ohishi N; Yagi K; Nozawa Y
    Biochem Biophys Res Commun; 2002 Mar; 291(4):861-7. PubMed ID: 11866444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of oxidative stress in the apoptosis of hepatocellular carcinoma induced by combination of arsenic trioxide and ascorbic acid.
    Li JJ; Tang Q; Li Y; Hu BR; Ming ZY; Fu Q; Qian JQ; Xiang JZ
    Acta Pharmacol Sin; 2006 Aug; 27(8):1078-84. PubMed ID: 16867262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apoptotic efficacy of etomoxir in human acute myeloid leukemia cells. Cooperation with arsenic trioxide and glycolytic inhibitors, and regulation by oxidative stress and protein kinase activities.
    Estañ MC; Calviño E; Calvo S; Guillén-Guío B; Boyano-Adánez Mdel C; de Blas E; Rial E; Aller P
    PLoS One; 2014; 9(12):e115250. PubMed ID: 25506699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased cellular glutathione and protection by bone marrow stromal cells account for the resistance of non-acute promylocytic leukemia acute myeloid leukemia cells to arsenic trioxide in vivo.
    Lee C; Lin Y; Huang M; Lin C; Liu C; Chow J; Liu HE
    Leuk Lymphoma; 2006 Mar; 47(3):521-9. PubMed ID: 16396776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redirecting apoptosis to aponecrosis induces selective cytotoxicity to pancreatic cancer cells through increased ROS, decline in ATP levels, and VDAC.
    Dinnen RD; Mao Y; Qiu W; Cassai N; Slavkovich VN; Nichols G; Su GH; Brandt-Rauf P; Fine RL
    Mol Cancer Ther; 2013 Dec; 12(12):2792-803. PubMed ID: 24126434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potentiation of arsenic trioxide cytotoxicity by Parthenolide and buthionine sulfoximine in murine and human leukemic cells.
    Duechler M; Stańczyk M; Czyz M; Stepnik M
    Cancer Chemother Pharmacol; 2008 Apr; 61(5):727-37. PubMed ID: 17594095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutathione depletion overcomes resistance to arsenic trioxide in arsenic-resistant cell lines.
    Davison K; Côté S; Mader S; Miller WH
    Leukemia; 2003 May; 17(5):931-40. PubMed ID: 12750708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic trioxide-induced cytotoxicity in small cell lung cancer via altered redox homeostasis and mitochondrial integrity.
    Zheng CY; Lam SK; Li YY; Ho JC
    Int J Oncol; 2015 Mar; 46(3):1067-78. PubMed ID: 25572414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined arginine and ascorbic acid treatment induces apoptosis in the hepatoma cell line HA22T/VGH and changes in redox status involving the pentose phosphate pathway and reactive oxygen and nitrogen species.
    Hsieh BS; Huang LW; Su SJ; Cheng HL; Hu YC; Hung TC; Chang KL
    J Nutr Biochem; 2011 Mar; 22(3):234-41. PubMed ID: 20558052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting redox homeostasis in rhabdomyosarcoma cells: GSH-depleting agents enhance auranofin-induced cell death.
    Habermann KJ; Grünewald L; van Wijk S; Fulda S
    Cell Death Dis; 2017 Oct; 8(10):e3067. PubMed ID: 28981107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular glutathione content influences the sensitivity of lung cancer cell lines to methylseleninic acid.
    Liu C; Liu H; Li Y; Wu Z; Zhu Y; Wang T; Gao AC; Chen J; Zhou Q
    Mol Carcinog; 2012 Apr; 51(4):303-14. PubMed ID: 21520298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.