BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 16147416)

  • 1. Comparison of measurement methods for quantifying hand force.
    Koppelaar E; Wells R
    Ergonomics; 2005 Jun; 48(8):983-1007. PubMed ID: 16147416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interobserver repeatability and validity of an observation method to assess physical loads imposed on the upper extremities.
    Ketola R; Toivonen R; Viikari-Juntura E
    Ergonomics; 2001 Feb; 44(2):119-31. PubMed ID: 11209872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accuracy of the Borg CR10 scale for estimating grip forces associated with hand tool tasks.
    McGorry RW; Lin JH; Dempsey PG; Casey JS
    J Occup Environ Hyg; 2010 May; 7(5):298-306. PubMed ID: 20309773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of self-report, video observation and direct measurement methods for upper extremity musculoskeletal disorder physical risk factors.
    Spielholz P; Silverstein B; Morgan M; Checkoway H; Kaufman J
    Ergonomics; 2001 May; 44(6):588-613. PubMed ID: 11373023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forearm posture and grip effects during push and pull tasks.
    Di Domizio J; Keir PJ
    Ergonomics; 2010 Mar; 53(3):336-43. PubMed ID: 20191408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of assessment methods of hand activity and force for use in calculating the ACGIH(R) hand activity level (HAL) TLV(R).
    Wurzelbacher S; Burt S; Crombie K; Ramsey J; Luo L; Allee S; Jin Y
    J Occup Environ Hyg; 2010 Jul; 7(7):407-16. PubMed ID: 20446152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Risk assessment for upper extremity work related muscoloskeletal disorders in different manufactures by applying six methods of ergonomic analysis].
    Sala E; Torri D; Tomasi C; Apostoli P
    G Ital Med Lav Ergon; 2010; 32(2):162-73. PubMed ID: 20684437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reliability and validity assessment of the hand activity level threshold limit value and strain index using expert ratings of mono-task jobs.
    Spielholz P; Bao S; Howard N; Silverstein B; Fan J; Smith C; Salazar C
    J Occup Environ Hyg; 2008 Apr; 5(4):250-7. PubMed ID: 18286422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of work configuration, target angle and hand force direction on upper extremity muscle activity during sub-maximal overhead work.
    Chopp JN; Fischer SL; Dickerson CR
    Ergonomics; 2010 Jan; 53(1):83-91. PubMed ID: 20069484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfering effects of multitasking on muscle activity in the upper extremity.
    Au AK; Keir PJ
    J Electromyogr Kinesiol; 2007 Oct; 17(5):578-86. PubMed ID: 16904910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gender differences in hand stability of normal young people assessed at low force levels.
    Endo H; Kawahara K
    Ergonomics; 2011 Mar; 54(3):273-81. PubMed ID: 21390957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of hand function and precision grip control in individuals with cerebral palsy: a 13-year follow-up study.
    Eliasson AC; Forssberg H; Hung YC; Gordon AM
    Pediatrics; 2006 Oct; 118(4):e1226-36. PubMed ID: 17015511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-comparison of time- and frequency-domain methods for monitoring the myoelectric signal during a cyclic, force-varying, fatiguing hand-grip task.
    Clancy EA; Farina D; Merletti R
    J Electromyogr Kinesiol; 2005 Jun; 15(3):256-65. PubMed ID: 15763672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying exposure in occupational manual tasks with cumulative trauma disorder potential.
    Moore A; Wells R; Ranney D
    Ergonomics; 1991 Dec; 34(12):1433-53. PubMed ID: 1800109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying repetitive hand activity for epidemiological research on musculoskeletal disorders--part II: comparison of different methods of measuring force level and repetitiveness.
    Bao S; Howard N; Spielholz P; Silverstein B
    Ergonomics; 2006 Mar; 49(4):381-92. PubMed ID: 16690566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of occupational exposure methods relevant to musculoskeletal disorders: Worker-workstation interaction in an office environment.
    Van Eerd D; Hogg-Johnson S; Cole DC; Wells R; Mazumder A
    J Electromyogr Kinesiol; 2012 Apr; 22(2):176-85. PubMed ID: 22265105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of negatively sloped keyboard wedges on risk factors for upper extremity work-related musculoskeletal disorders and user performance.
    Woods M; Babski-Reeves K
    Ergonomics; 2005 Dec; 48(15):1793-808. PubMed ID: 16373317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Evaluation of work-related biomechanical overload: techniques for the acquisition and analysis of surface EMG signal].
    Pigini L; Colombini D; Rabuffetti M; Ferrarin M
    Med Lav; 2010; 101(2):118-33. PubMed ID: 20521562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying repetitive hand activity for epidemiological research on musculoskeletal disorders--part I: individual exposure assessment.
    Bao S; Spielholz P; Howard N; Silverstein B
    Ergonomics; 2006 Mar; 49(4):361-80. PubMed ID: 16690565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reproducibility and minimal detectable change of three-dimensional kinematic analysis of reaching tasks in people with hemiparesis after stroke.
    Wagner JM; Rhodes JA; Patten C
    Phys Ther; 2008 May; 88(5):652-63. PubMed ID: 18326055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.