These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

525 related articles for article (PubMed ID: 16147517)

  • 41. Competition between metals for binding to methanobactin enables expression of soluble methane monooxygenase in the presence of copper.
    Kalidass B; Ul-Haque MF; Baral BS; DiSpirito AA; Semrau JD
    Appl Environ Microbiol; 2015 Feb; 81(3):1024-31. PubMed ID: 25416758
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Involvement of MmoR and MmoG in the transcriptional activation of soluble methane monooxygenase genes in Methylosinus trichosporium OB3b.
    Scanlan J; Dumont MG; Murrell JC
    FEMS Microbiol Lett; 2009 Dec; 301(2):181-7. PubMed ID: 19878324
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A four-helix bundle stores copper for methane oxidation.
    Vita N; Platsaki S; Baslé A; Allen SJ; Paterson NG; Crombie AT; Murrell JC; Waldron KJ; Dennison C
    Nature; 2015 Sep; 525(7567):140-3. PubMed ID: 26308900
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The role of copper in the pMMO of Methylococcus capsulatus bath: a structural vs. catalytic function.
    Semrau JD; Zolandz D; Lidstrom ME; Chan SI
    J Inorg Biochem; 1995 Jun; 58(4):235-44. PubMed ID: 7500086
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Monitoring methanotrophic bacteria in hybrid anaerobic-aerobic reactors with PCR and a catabolic gene probe.
    Miguez CB; Shen CF; Bourque D; Guiot SR; Groleau D
    Appl Environ Microbiol; 1999 Feb; 65(2):381-8. PubMed ID: 9925557
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Methane monooxygenase: functionalizing methane at iron and copper.
    Sazinsky MH; Lippard SJ
    Met Ions Life Sci; 2015; 15():205-56. PubMed ID: 25707469
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Research progresses of methanotrophs and methane monooxygenases].
    Han B; Su T; Li X; Xing X
    Sheng Wu Gong Cheng Xue Bao; 2008 Sep; 24(9):1511-9. PubMed ID: 19160830
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Key Physiology of a Nitrite-Dependent Methane-Oxidizing Enrichment Culture.
    Guerrero-Cruz S; Stultiens K; van Kessel MAHJ; Versantvoort W; Jetten MSM; Op den Camp HJM; Kartal B
    Appl Environ Microbiol; 2019 Apr; 85(8):. PubMed ID: 30770408
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The biochemistry of methane oxidation.
    Hakemian AS; Rosenzweig AC
    Annu Rev Biochem; 2007; 76():223-41. PubMed ID: 17328677
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Study on the structure and function of a stable methane-oxidizing mixed microbial consortium].
    Luo MF; Wu H; Wang L; Xing XH
    Wei Sheng Wu Xue Bao; 2007 Feb; 47(1):103-9. PubMed ID: 17436634
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dioxygen activation in soluble methane monooxygenase.
    Tinberg CE; Lippard SJ
    Acc Chem Res; 2011 Apr; 44(4):280-8. PubMed ID: 21391602
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Role of the C-terminal region of the B component of Methylosinus trichosporium OB3b methane monooxygenase in the regulation of oxygen activation.
    Zhang J; Lipscomb JD
    Biochemistry; 2006 Feb; 45(5):1459-69. PubMed ID: 16445288
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Horizontal gene transfer of three co-inherited methane monooxygenase systems gave rise to methanotrophy in the Proteobacteria.
    Osborne CD; Haritos VS
    Mol Phylogenet Evol; 2018 Dec; 129():171-181. PubMed ID: 30149053
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biological methane oxidation: regulation, biochemistry, and active site structure of particulate methane monooxygenase.
    Lieberman RL; Rosenzweig AC
    Crit Rev Biochem Mol Biol; 2004; 39(3):147-64. PubMed ID: 15596549
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Three-dimensional structure determination of a protein supercomplex that oxidizes methane to formaldehyde in Methylococcus capsulatus (Bath).
    Myronova N; Kitmitto A; Collins RF; Miyaji A; Dalton H
    Biochemistry; 2006 Oct; 45(39):11905-14. PubMed ID: 17002291
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biodegradation of trichloroethylene by Methylosinus trichosporium OB3b.
    Tsien HC; Brusseau GA; Hanson RS; Waclett LP
    Appl Environ Microbiol; 1989 Dec; 55(12):3155-61. PubMed ID: 2515801
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Intermediate Q from soluble methane monooxygenase hydroxylates the mechanistic substrate probe norcarane: evidence for a stepwise reaction.
    Brazeau BJ; Austin RN; Tarr C; Groves JT; Lipscomb JD
    J Am Chem Soc; 2001 Dec; 123(48):11831-7. PubMed ID: 11724588
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Trichloroethylene and chloroform degradation by a recombinant pseudomonad expressing soluble methane monooxygenase from Methylosinus trichosporium OB3b.
    Jahng D; Wood TK
    Appl Environ Microbiol; 1994 Jul; 60(7):2473-82. PubMed ID: 8074526
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Coupled effects of methane monooxygenase and nitrogen source on growth and poly-β-hydroxybutyrate (PHB) production of Methylosinus trichosporium OB3b.
    Zhang T; Zhou J; Wang X; Zhang Y
    J Environ Sci (China); 2017 Feb; 52():49-57. PubMed ID: 28254057
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.