BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 16147986)

  • 1. Evidence that public database records for many cancer-associated genes reflect a splice form found in tumors and lack normal splice forms.
    Roy M; Xu Q; Lee C
    Nucleic Acids Res; 2005; 33(16):5026-33. PubMed ID: 16147986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of novel splice forms and functional analysis of cancer-specific alternative splicing in human expressed sequences.
    Xu Q; Lee C
    Nucleic Acids Res; 2003 Oct; 31(19):5635-43. PubMed ID: 14500827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RJunBase: a database of RNA splice junctions in human normal and cancerous tissues.
    Li Q; Lai H; Li Y; Chen B; Chen S; Li Y; Huang Z; Meng Z; Wang P; Hu Z; Huang S
    Nucleic Acids Res; 2021 Jan; 49(D1):D201-D211. PubMed ID: 33179749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational analysis and experimental validation of tumor-associated alternative RNA splicing in human cancer.
    Wang Z; Lo HS; Yang H; Gere S; Hu Y; Buetow KH; Lee MP
    Cancer Res; 2003 Feb; 63(3):655-7. PubMed ID: 12566310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes].
    Zhang DL; Ji L; Li YD
    Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide detection of tissue-specific alternative splicing in the human transcriptome.
    Xu Q; Modrek B; Lee C
    Nucleic Acids Res; 2002 Sep; 30(17):3754-66. PubMed ID: 12202761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic splice-site analysis reveals frequent alternative splicing close to the dominant splice site.
    Dou Y; Fox-Walsh KL; Baldi PF; Hertel KJ
    RNA; 2006 Dec; 12(12):2047-56. PubMed ID: 17053087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alternative splicing of breast cancer associated gene BRCA1 from breast cancer cell line.
    Lixia M; Zhijian C; Chao S; Chaojiang G; Congyi Z
    J Biochem Mol Biol; 2007 Jan; 40(1):15-21. PubMed ID: 17244477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SpliceCenter: a suite of web-based bioinformatic applications for evaluating the impact of alternative splicing on RT-PCR, RNAi, microarray, and peptide-based studies.
    Ryan MC; Zeeberg BR; Caplen NJ; Cleland JA; Kahn AB; Liu H; Weinstein JN
    BMC Bioinformatics; 2008 Jul; 9():313. PubMed ID: 18638396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of novel splice forms in human and mouse using cross-species approach.
    Kan Z; Castle J; Johnson JM; Tsinoremas NF
    Pac Symp Biocomput; 2004; ():42-53. PubMed ID: 14992491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient prediction of alternative splice forms using protein domain homology.
    Hiller M; Backofen R; Heymann S; Busch A; Glaesser TM; Freytag JC
    In Silico Biol; 2004; 4(2):195-208. PubMed ID: 15107023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Verification of predicted alternatively spliced Wnt genes reveals two new splice variants (CTNNB1 and LRP5) and altered Axin-1 expression during tumour progression.
    Pospisil H; Herrmann A; Butherus K; Pirson S; Reich JG; Kemmner W
    BMC Genomics; 2006 Jun; 7():148. PubMed ID: 16772034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EST comparison indicates 38% of human mRNAs contain possible alternative splice forms.
    Brett D; Hanke J; Lehmann G; Haase S; Delbrück S; Krueger S; Reich J; Bork P
    FEBS Lett; 2000 May; 474(1):83-6. PubMed ID: 10828456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue specific expression of alternative splice forms of human cyclic nucleotide gated channel subunit CNGA3.
    Cassar SC; Chen J; Zhang D; Gopalakrishnan M
    Mol Vis; 2004 Oct; 10():808-13. PubMed ID: 15534583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A global view of cancer-specific transcript variants by subtractive transcriptome-wide analysis.
    He C; Zhou F; Zuo Z; Cheng H; Zhou R
    PLoS One; 2009; 4(3):e4732. PubMed ID: 19266097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Splice Expression Variation Analysis (SEVA) for inter-tumor heterogeneity of gene isoform usage in cancer.
    Afsari B; Guo T; Considine M; Florea L; Kagohara LT; Stein-O'Brien GL; Kelley D; Flam E; Zambo KD; Ha PK; Geman D; Ochs MF; Califano JA; Gaykalova DA; Favorov AV; Fertig EJ
    Bioinformatics; 2018 Jun; 34(11):1859-1867. PubMed ID: 29342249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noisy splicing drives mRNA isoform diversity in human cells.
    Pickrell JK; Pai AA; Gilad Y; Pritchard JK
    PLoS Genet; 2010 Dec; 6(12):e1001236. PubMed ID: 21151575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational discovery of human coding and non-coding transcripts with conserved splice sites.
    Rose D; Hiller M; Schutt K; Hackermüller J; Backofen R; Stadler PF
    Bioinformatics; 2011 Jul; 27(14):1894-900. PubMed ID: 21622663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expressed sequence tag analysis of adult human lens for the NEIBank Project: over 2000 non-redundant transcripts, novel genes and splice variants.
    Wistow G; Bernstein SL; Wyatt MK; Behal A; Touchman JW; Bouffard G; Smith D; Peterson K
    Mol Vis; 2002 Jun; 8():171-84. PubMed ID: 12107413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cancer-Associated Perturbations in Alternative Pre-messenger RNA Splicing.
    Shkreta L; Bell B; Revil T; Venables JP; Prinos P; Elela SA; Chabot B
    Cancer Treat Res; 2013; 158():41-94. PubMed ID: 24222354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.