These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
456 related articles for article (PubMed ID: 16147989)
1. Distribution of SR protein exonic splicing enhancer motifs in human protein-coding genes. Wang J; Smith PJ; Krainer AR; Zhang MQ Nucleic Acids Res; 2005; 33(16):5053-62. PubMed ID: 16147989 [TBL] [Abstract][Full Text] [Related]
2. ESEfinder: A web resource to identify exonic splicing enhancers. Cartegni L; Wang J; Zhu Z; Zhang MQ; Krainer AR Nucleic Acids Res; 2003 Jul; 31(13):3568-71. PubMed ID: 12824367 [TBL] [Abstract][Full Text] [Related]
3. Distribution of exonic splicing enhancer elements in human genes. Wu Y; Zhang Y; Zhang J Genomics; 2005 Sep; 86(3):329-36. PubMed ID: 16005179 [TBL] [Abstract][Full Text] [Related]
5. Specific binding of an exonic splicing enhancer by the pre-mRNA splicing factor SRp55. Nagel RJ; Lancaster AM; Zahler AM RNA; 1998 Jan; 4(1):11-23. PubMed ID: 9436904 [TBL] [Abstract][Full Text] [Related]
6. Subtle discrepancies of SF2/ASF ESE sequence motif among human tissues: A computational approach. Siala O; Rebai A; Baklouti F; Fakhfakh F Comput Biol Chem; 2010 Jun; 34(3):203-9. PubMed ID: 20637698 [TBL] [Abstract][Full Text] [Related]
7. Insights into the selective activation of alternatively used splice acceptors by the human immunodeficiency virus type-1 bidirectional splicing enhancer. Asang C; Hauber I; Schaal H Nucleic Acids Res; 2008 Mar; 36(5):1450-63. PubMed ID: 18203748 [TBL] [Abstract][Full Text] [Related]
8. SR proteins ASF/SF2 and SRp55 participate in tissue factor biosynthesis in human monocytic cells. Tardos JG; Eisenreich A; Deikus G; Bechhofer DH; Chandradas S; Zafar U; Rauch U; Bogdanov VY J Thromb Haemost; 2008 May; 6(5):877-84. PubMed ID: 18315555 [TBL] [Abstract][Full Text] [Related]
9. Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Liu HX; Zhang M; Krainer AR Genes Dev; 1998 Jul; 12(13):1998-2012. PubMed ID: 9649504 [TBL] [Abstract][Full Text] [Related]
10. A systematic analysis of intronic sequences downstream of 5' splice sites reveals a widespread role for U-rich motifs and TIA1/TIAL1 proteins in alternative splicing regulation. Aznarez I; Barash Y; Shai O; He D; Zielenski J; Tsui LC; Parkinson J; Frey BJ; Rommens JM; Blencowe BJ Genome Res; 2008 Aug; 18(8):1247-58. PubMed ID: 18456862 [TBL] [Abstract][Full Text] [Related]
11. Evidence for the function of an exonic splicing enhancer after the first catalytic step of pre-mRNA splicing. Chew SL; Liu HX; Mayeda A; Krainer AR Proc Natl Acad Sci U S A; 1999 Sep; 96(19):10655-60. PubMed ID: 10485881 [TBL] [Abstract][Full Text] [Related]
12. Exonic splicing enhancers contribute to the use of both 3' and 5' splice site usage of rat beta-tropomyosin pre-mRNA. Selvakumar M; Helfman DM RNA; 1999 Mar; 5(3):378-94. PubMed ID: 10094307 [TBL] [Abstract][Full Text] [Related]
13. Exonic splicing enhancer motif recognized by human SC35 under splicing conditions. Liu HX; Chew SL; Cartegni L; Zhang MQ; Krainer AR Mol Cell Biol; 2000 Feb; 20(3):1063-71. PubMed ID: 10629063 [TBL] [Abstract][Full Text] [Related]
14. Deletion of the N-terminus of SF2/ASF permits RS-domain-independent pre-mRNA splicing. Shaw SD; Chakrabarti S; Ghosh G; Krainer AR PLoS One; 2007 Sep; 2(9):e854. PubMed ID: 17786225 [TBL] [Abstract][Full Text] [Related]
15. Slight variations in the SC35 ESE sequence motif among human chromosomes: a computational approach. Siala O; Rebai A; Fakhfakh F Gene; 2014 Jul; 545(1):102-10. PubMed ID: 24792892 [TBL] [Abstract][Full Text] [Related]
16. Depletion of TDP 43 overrides the need for exonic and intronic splicing enhancers in the human apoA-II gene. Mercado PA; Ayala YM; Romano M; Buratti E; Baralle FE Nucleic Acids Res; 2005; 33(18):6000-10. PubMed ID: 16254078 [TBL] [Abstract][Full Text] [Related]
17. Tra2 beta, SF2/ASF and SRp30c modulate the function of an exonic splicing enhancer in exon 10 of tau pre-mRNA. Kondo S; Yamamoto N; Murakami T; Okumura M; Mayeda A; Imaizumi K Genes Cells; 2004 Feb; 9(2):121-30. PubMed ID: 15009090 [TBL] [Abstract][Full Text] [Related]
18. PLP1 alternative splicing in differentiating oligodendrocytes: characterization of an exonic splicing enhancer. Wang E; Huang Z; Hobson GM; Dimova N; Sperle K; McCullough A; Cambi F J Cell Biochem; 2006 Apr; 97(5):999-1016. PubMed ID: 16288477 [TBL] [Abstract][Full Text] [Related]
19. SR proteins Asf/SF2 and 9G8 interact to activate enhancer-dependent intron D splicing of bovine growth hormone pre-mRNA in vitro. Li X; Shambaugh ME; Rottman FM; Bokar JA RNA; 2000 Dec; 6(12):1847-58. PubMed ID: 11142383 [TBL] [Abstract][Full Text] [Related]
20. Exonic splicing enhancer-dependent selection of the bovine papillomavirus type 1 nucleotide 3225 3' splice site can be rescued in a cell lacking splicing factor ASF/SF2 through activation of the phosphatidylinositol 3-kinase/Akt pathway. Liu X; Mayeda A; Tao M; Zheng ZM J Virol; 2003 Feb; 77(3):2105-15. PubMed ID: 12525645 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]