BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

459 related articles for article (PubMed ID: 16147989)

  • 1. Distribution of SR protein exonic splicing enhancer motifs in human protein-coding genes.
    Wang J; Smith PJ; Krainer AR; Zhang MQ
    Nucleic Acids Res; 2005; 33(16):5053-62. PubMed ID: 16147989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ESEfinder: A web resource to identify exonic splicing enhancers.
    Cartegni L; Wang J; Zhu Z; Zhang MQ; Krainer AR
    Nucleic Acids Res; 2003 Jul; 31(13):3568-71. PubMed ID: 12824367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of exonic splicing enhancer elements in human genes.
    Wu Y; Zhang Y; Zhang J
    Genomics; 2005 Sep; 86(3):329-36. PubMed ID: 16005179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RESCUE-ESE identifies candidate exonic splicing enhancers in vertebrate exons.
    Fairbrother WG; Yeo GW; Yeh R; Goldstein P; Mawson M; Sharp PA; Burge CB
    Nucleic Acids Res; 2004 Jul; 32(Web Server issue):W187-90. PubMed ID: 15215377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific binding of an exonic splicing enhancer by the pre-mRNA splicing factor SRp55.
    Nagel RJ; Lancaster AM; Zahler AM
    RNA; 1998 Jan; 4(1):11-23. PubMed ID: 9436904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subtle discrepancies of SF2/ASF ESE sequence motif among human tissues: A computational approach.
    Siala O; Rebai A; Baklouti F; Fakhfakh F
    Comput Biol Chem; 2010 Jun; 34(3):203-9. PubMed ID: 20637698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the selective activation of alternatively used splice acceptors by the human immunodeficiency virus type-1 bidirectional splicing enhancer.
    Asang C; Hauber I; Schaal H
    Nucleic Acids Res; 2008 Mar; 36(5):1450-63. PubMed ID: 18203748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SR proteins ASF/SF2 and SRp55 participate in tissue factor biosynthesis in human monocytic cells.
    Tardos JG; Eisenreich A; Deikus G; Bechhofer DH; Chandradas S; Zafar U; Rauch U; Bogdanov VY
    J Thromb Haemost; 2008 May; 6(5):877-84. PubMed ID: 18315555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins.
    Liu HX; Zhang M; Krainer AR
    Genes Dev; 1998 Jul; 12(13):1998-2012. PubMed ID: 9649504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A systematic analysis of intronic sequences downstream of 5' splice sites reveals a widespread role for U-rich motifs and TIA1/TIAL1 proteins in alternative splicing regulation.
    Aznarez I; Barash Y; Shai O; He D; Zielenski J; Tsui LC; Parkinson J; Frey BJ; Rommens JM; Blencowe BJ
    Genome Res; 2008 Aug; 18(8):1247-58. PubMed ID: 18456862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for the function of an exonic splicing enhancer after the first catalytic step of pre-mRNA splicing.
    Chew SL; Liu HX; Mayeda A; Krainer AR
    Proc Natl Acad Sci U S A; 1999 Sep; 96(19):10655-60. PubMed ID: 10485881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exonic splicing enhancers contribute to the use of both 3' and 5' splice site usage of rat beta-tropomyosin pre-mRNA.
    Selvakumar M; Helfman DM
    RNA; 1999 Mar; 5(3):378-94. PubMed ID: 10094307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exonic splicing enhancer motif recognized by human SC35 under splicing conditions.
    Liu HX; Chew SL; Cartegni L; Zhang MQ; Krainer AR
    Mol Cell Biol; 2000 Feb; 20(3):1063-71. PubMed ID: 10629063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deletion of the N-terminus of SF2/ASF permits RS-domain-independent pre-mRNA splicing.
    Shaw SD; Chakrabarti S; Ghosh G; Krainer AR
    PLoS One; 2007 Sep; 2(9):e854. PubMed ID: 17786225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slight variations in the SC35 ESE sequence motif among human chromosomes: a computational approach.
    Siala O; Rebai A; Fakhfakh F
    Gene; 2014 Jul; 545(1):102-10. PubMed ID: 24792892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depletion of TDP 43 overrides the need for exonic and intronic splicing enhancers in the human apoA-II gene.
    Mercado PA; Ayala YM; Romano M; Buratti E; Baralle FE
    Nucleic Acids Res; 2005; 33(18):6000-10. PubMed ID: 16254078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tra2 beta, SF2/ASF and SRp30c modulate the function of an exonic splicing enhancer in exon 10 of tau pre-mRNA.
    Kondo S; Yamamoto N; Murakami T; Okumura M; Mayeda A; Imaizumi K
    Genes Cells; 2004 Feb; 9(2):121-30. PubMed ID: 15009090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PLP1 alternative splicing in differentiating oligodendrocytes: characterization of an exonic splicing enhancer.
    Wang E; Huang Z; Hobson GM; Dimova N; Sperle K; McCullough A; Cambi F
    J Cell Biochem; 2006 Apr; 97(5):999-1016. PubMed ID: 16288477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SR proteins Asf/SF2 and 9G8 interact to activate enhancer-dependent intron D splicing of bovine growth hormone pre-mRNA in vitro.
    Li X; Shambaugh ME; Rottman FM; Bokar JA
    RNA; 2000 Dec; 6(12):1847-58. PubMed ID: 11142383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exonic splicing enhancer-dependent selection of the bovine papillomavirus type 1 nucleotide 3225 3' splice site can be rescued in a cell lacking splicing factor ASF/SF2 through activation of the phosphatidylinositol 3-kinase/Akt pathway.
    Liu X; Mayeda A; Tao M; Zheng ZM
    J Virol; 2003 Feb; 77(3):2105-15. PubMed ID: 12525645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.