These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 16148276)

  • 21. Motor cortical representation of position and velocity during reaching.
    Wang W; Chan SS; Heldman DA; Moran DW
    J Neurophysiol; 2007 Jun; 97(6):4258-70. PubMed ID: 17392416
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vision of the hand prior to movement onset allows full motor adaptation to a multi-force environment.
    Bourdin C; Bringoux L; Gauthier GM; Vercher JL
    Brain Res Bull; 2006 Dec; 71(1-3):101-10. PubMed ID: 17113935
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experience modulates automatic imitation.
    Heyes C; Bird G; Johnson H; Haggard P
    Brain Res Cogn Brain Res; 2005 Feb; 22(2):233-40. PubMed ID: 15653296
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Finger movement tracking control in 8- and 9-year-old males and females in stimulus-response compatible and non-compatible hand positions.
    Carey JR; Comnik KT; Ingman MS
    Cortex; 2001 Jun; 37(3):433-9. PubMed ID: 11485067
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Timing finger opening in overarm throwing based on a spatial representation of hand path.
    Hore J; Watts S
    J Neurophysiol; 2005 Jun; 93(6):3189-99. PubMed ID: 15911892
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of online visual feedback for the control of target-directed and allocentric hand movements.
    Thaler L; Goodale MA
    J Neurophysiol; 2011 Feb; 105(2):846-59. PubMed ID: 21160005
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatial transformations for eye-hand coordination.
    Crawford JD; Medendorp WP; Marotta JJ
    J Neurophysiol; 2004 Jul; 92(1):10-9. PubMed ID: 15212434
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of visuo-motor transformations on hand-foot coordination: evidence in favor of the incongruency hypothesis.
    Salesse R; Temprado JJ
    Acta Psychol (Amst); 2005 Jun; 119(2):143-57. PubMed ID: 15877978
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Independent component analysis of dynamic brain responses during visuomotor adaptation.
    Contreras-Vidal JL; Kerick SE
    Neuroimage; 2004 Mar; 21(3):936-45. PubMed ID: 15006660
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Goal-directed hand movements are not affected by the biased space representation in spatial neglect.
    Himmelbach M; Karnath HO
    J Cogn Neurosci; 2003 Oct; 15(7):972-80. PubMed ID: 14614808
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visual perception modifies goal-directed movement control: supporting evidence from a visual perturbation paradigm.
    Proteau L; Masson G
    Q J Exp Psychol A; 1997 Nov; 50(4):726-41. PubMed ID: 9450378
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Separate adaptive mechanisms for controlling trajectory and final position in reaching.
    Scheidt RA; Ghez C
    J Neurophysiol; 2007 Dec; 98(6):3600-13. PubMed ID: 17913996
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Complex unconstrained three-dimensional hand movement and constant equi-affine speed.
    Maoz U; Berthoz A; Flash T
    J Neurophysiol; 2009 Feb; 101(2):1002-15. PubMed ID: 19073811
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Manual asymmetries in the temporal and spatial control of aimed movements.
    van Doorn RR
    Hum Mov Sci; 2008 Aug; 27(4):551-76. PubMed ID: 18639362
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcranial magnetic stimulation over human dorsal-lateral posterior parietal cortex disrupts integration of hand position signals into the reach plan.
    Vesia M; Yan X; Henriques DY; Sergio LE; Crawford JD
    J Neurophysiol; 2008 Oct; 100(4):2005-14. PubMed ID: 18684904
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapid and long-lasting plasticity of input-output mapping.
    Yamamoto K; Hoffman DS; Strick PL
    J Neurophysiol; 2006 Nov; 96(5):2797-801. PubMed ID: 16928799
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Action goal selection and motor planning can be dissociated by tool use.
    Collins T; Schicke T; Röder B
    Cognition; 2008 Dec; 109(3):363-71. PubMed ID: 19012884
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On-line vs. off-line utilization of peripheral visual afferent information to ensure spatial accuracy of goal-directed movements.
    Bédard P; Proteau L
    Exp Brain Res; 2004 Sep; 158(1):75-85. PubMed ID: 15029468
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deficits in rapid adjustments of movements according to task constraints in Parkinson's disease.
    Tunik E; Adamovich SV; Poizner H; Feldman AG
    Mov Disord; 2004 Aug; 19(8):897-906. PubMed ID: 15300654
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.