These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 16148279)

  • 1. Physiology and morphology indicate that individual spinal interneurons contribute to diverse limb movements.
    Berkowitz A
    J Neurophysiol; 2005 Dec; 94(6):4455-70. PubMed ID: 16148279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiology and morphology of shared and specialized spinal interneurons for locomotion and scratching.
    Berkowitz A
    J Neurophysiol; 2008 Jun; 99(6):2887-901. PubMed ID: 18385486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Somato-dendritic morphology predicts physiology for neurons that contribute to several kinds of limb movements.
    Berkowitz A; Yosten GL; Ballard RM
    J Neurophysiol; 2006 May; 95(5):2821-31. PubMed ID: 16452255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifunctional and specialized spinal interneurons for turtle limb movements.
    Berkowitz A
    Ann N Y Acad Sci; 2010 Jun; 1198():119-32. PubMed ID: 20536926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Both shared and specialized spinal circuitry for scratching and swimming in turtles.
    Berkowitz A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Apr; 188(3):225-34. PubMed ID: 11976891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spinal interneurons that are selectively activated during fictive flexion reflex.
    Berkowitz A
    J Neurosci; 2007 Apr; 27(17):4634-41. PubMed ID: 17460076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhythmicity of spinal neurons activated during each form of fictive scratching in spinal turtles.
    Berkowitz A
    J Neurophysiol; 2001 Aug; 86(2):1026-36. PubMed ID: 11495970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spinal Interneurons With Dual Axon Projections to Knee-Extensor and Hip-Extensor Motor Pools.
    Nguyen KH; Scheurich TE; Gu T; Berkowitz A
    Front Neural Circuits; 2020; 14():7. PubMed ID: 32226362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Timing of knee-related spinal neurons during fictive rostral scratching in the turtle.
    Stein PS; Daniels-McQueen S
    J Neurophysiol; 2003 Dec; 90(6):3585-93. PubMed ID: 12968015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Partly shared spinal cord networks for locomotion and scratching.
    Berkowitz A; Hao ZZ
    Integr Comp Biol; 2011 Dec; 51(6):890-902. PubMed ID: 21700568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reciprocal interactions in the turtle hindlimb enlargement contribute to scratch rhythmogenesis.
    Currie SN; Gonsalves GG
    J Neurophysiol; 1999 Jun; 81(6):2977-87. PubMed ID: 10368414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurotransmitters and Motoneuron Contacts of Multifunctional and Behaviorally Specialized Turtle Spinal Cord Interneurons.
    Bannatyne BA; Hao ZZ; Dyer GMC; Watanabe M; Maxwell DJ; Berkowitz A
    J Neurosci; 2020 Mar; 40(13):2680-2694. PubMed ID: 32066584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong interactions between spinal cord networks for locomotion and scratching.
    Hao ZZ; Spardy LE; Nguyen EB; Rubin JE; Berkowitz A
    J Neurophysiol; 2011 Oct; 106(4):1766-81. PubMed ID: 21734103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bilateral control of hindlimb scratching in the spinal turtle: contralateral spinal circuitry contributes to the normal ipsilateral motor pattern of fictive rostral scratching.
    Stein PS; Victor JC; Field EC; Currie SN
    J Neurosci; 1995 Jun; 15(6):4343-55. PubMed ID: 7790913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Activity of interneurons of the lumbosacral division of the spinal cord during fictive scratching].
    Baev KV; Degtiarenko AM; Zavadskaia TV; Kostiuk PG
    Neirofiziologiia; 1981; 13(1):58-66. PubMed ID: 7219606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spinal cord coordination of hindlimb movements in the turtle: interlimb temporal relationships during bilateral scratching and swimming.
    Field EC; Stein PS
    J Neurophysiol; 1997 Sep; 78(3):1404-13. PubMed ID: 9310431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrically evoked locomotor activity in the turtle spinal cord hemi-enlargement preparation.
    Samara RF; Currie SN
    Neurosci Lett; 2008 Aug; 441(1):105-9. PubMed ID: 18597937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modular organization of the multipartite central pattern generator for turtle rostral scratch: knee-related interneurons during deletions.
    Stein PS; Daniels-McQueen S; Lai J; Liu Z; Corman TS
    J Neurophysiol; 2016 Jun; 115(6):3130-9. PubMed ID: 27030737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dense distributed processing in a hindlimb scratch motor network.
    Guzulaitis R; Alaburda A; Hounsgaard J
    J Neurosci; 2014 Aug; 34(32):10756-64. PubMed ID: 25100606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity of descending propriospinal axons in the turtle hindlimb enlargement during two forms of fictive scratching: phase analyses.
    Berkowitz A; Stein PS
    J Neurosci; 1994 Aug; 14(8):5105-19. PubMed ID: 8046471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.