These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
479 related articles for article (PubMed ID: 16148398)
1. Comparison of radio frequency energy absorption in ear and eye region of children and adults at 900, 1800 and 2450 MHz. Keshvari J; Lang S Phys Med Biol; 2005 Sep; 50(18):4355-69. PubMed ID: 16148398 [TBL] [Abstract][Full Text] [Related]
2. The effect of increase in dielectric values on specific absorption rate (SAR) in eye and head tissues following 900, 1800 and 2450 MHz radio frequency (RF) exposure. Keshvari J; Keshvari R; Lang S Phys Med Biol; 2006 Mar; 51(6):1463-77. PubMed ID: 16510956 [TBL] [Abstract][Full Text] [Related]
3. Electromagnetic absorption in the head of adults and children due to mobile phone operation close to the head. de Salles AA; Bulla G; Rodriguez CE Electromagn Biol Med; 2006; 25(4):349-60. PubMed ID: 17178592 [TBL] [Abstract][Full Text] [Related]
4. Differences in RF energy absorption in the heads of adults and children. Christ A; Kuster N Bioelectromagnetics; 2005; Suppl 7():S31-44. PubMed ID: 16142771 [TBL] [Abstract][Full Text] [Related]
5. Analysis of RF exposure in the head tissues of children and adults. Wiart J; Hadjem A; Wong MF; Bloch I Phys Med Biol; 2008 Jul; 53(13):3681-95. PubMed ID: 18562780 [TBL] [Abstract][Full Text] [Related]
6. FDTD calculations of specific energy absorption rate in a seated voxel model of the human body from 10 MHz to 3 GHz. Findlay RP; Dimbylow PJ Phys Med Biol; 2006 May; 51(9):2339-52. PubMed ID: 16625046 [TBL] [Abstract][Full Text] [Related]
7. The dielectric properties of human pineal gland tissue and RF absorption due to wireless communication devices in the frequency range 400-1850 MHz. Schmid G; Uberbacher R; Samaras T; Tschabitscher M; Mazal PR Phys Med Biol; 2007 Sep; 52(17):5457-68. PubMed ID: 17762098 [TBL] [Abstract][Full Text] [Related]
8. High-resolution numerical model of the middle and inner ear for a detailed analysis of radio frequency absorption. Schmid G; Uberbacher R; Samaras T; Jappel A; Baumgartner WD; Tschabitscher M; Mazal PR Phys Med Biol; 2007 Apr; 52(7):1771-81. PubMed ID: 17374910 [TBL] [Abstract][Full Text] [Related]
9. Interaction of mobile phones with superficial passive metallic implants. Virtanen H; Huttunen J; Toropainen A; Lappalainen R Phys Med Biol; 2005 Jun; 50(11):2689-700. PubMed ID: 15901963 [TBL] [Abstract][Full Text] [Related]
10. Volume-averaged SAR in adult and child head models when using mobile phones: a computational study with detailed CAD-based models of commercial mobile phones. Keshvari J; Heikkilä T Prog Biophys Mol Biol; 2011 Dec; 107(3):439-42. PubMed ID: 22005524 [TBL] [Abstract][Full Text] [Related]
11. Modeling of RF head exposure in children. Wiart J; Hadjem A; Gadi N; Bloch I; Wong MF; Pradier A; Lautru D; Hanna VF; Dale C Bioelectromagnetics; 2005; Suppl 7():S19-30. PubMed ID: 16142772 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the electromagnetic near-field absorption in layered biological tissue in the frequency range from 30 MHz to 6,000 MHz. Christ A; Samaras T; Klingenböck A; Kuster N Phys Med Biol; 2006 Oct; 51(19):4951-65. PubMed ID: 16985280 [TBL] [Abstract][Full Text] [Related]
13. Resonance behaviour of whole-body averaged specific energy absorption rate (SAR) in the female voxel model, NAOMI. Dimbylow P Phys Med Biol; 2005 Sep; 50(17):4053-63. PubMed ID: 16177529 [TBL] [Abstract][Full Text] [Related]
14. Metal-framed spectacles and implants and specific absorption rate among adults and children using mobile phones at 900/1800/2100 MHz. Joó E; Szász A; Szendrö P Electromagn Biol Med; 2006; 25(2):103-12. PubMed ID: 16771299 [TBL] [Abstract][Full Text] [Related]
15. SAR distribution in human beings when using body-worn RF transmitters. Christ A; Samaras T; Neufeld E; Klingenböck A; Kuster N Radiat Prot Dosimetry; 2007; 124(1):6-14. PubMed ID: 17652110 [TBL] [Abstract][Full Text] [Related]
16. Age-dependent tissue-specific exposure of cell phone users. Christ A; Gosselin MC; Christopoulou M; Kühn S; Kuster N Phys Med Biol; 2010 Apr; 55(7):1767-83. PubMed ID: 20208098 [TBL] [Abstract][Full Text] [Related]
17. Assessment of the radio-frequency electromagnetic fields induced in the human body from mobile phones used with hands-free kits. Kühn S; Cabot E; Christ A; Capstick M; Kuster N Phys Med Biol; 2009 Sep; 54(18):5493-508. PubMed ID: 19706964 [TBL] [Abstract][Full Text] [Related]
18. Modeling of the internal fields distribution in human inner hearing system exposed to 900 and 1800 MHz. Parazzini M; Tognola G; Franzoni C; Grandori F; Ravazzani P IEEE Trans Biomed Eng; 2007 Jan; 54(1):39-48. PubMed ID: 17260854 [TBL] [Abstract][Full Text] [Related]
19. The effect of authentic metallic implants on the SAR distribution of the head exposed to 900, 1800 and 2450 MHz dipole near field. Virtanen H; Keshvari J; Lappalainen R Phys Med Biol; 2007 Mar; 52(5):1221-36. PubMed ID: 17301450 [TBL] [Abstract][Full Text] [Related]
20. Computational modelling of temperature rises in the eye in the near field of radiofrequency sources at 380, 900 and 1800 MHz. Wainwright PR Phys Med Biol; 2007 Jun; 52(12):3335-50. PubMed ID: 17664547 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]