These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 1614873)

  • 1. WORDUP: an efficient algorithm for discovering statistically significant patterns in DNA sequences.
    Pesole G; Prunella N; Liuni S; Attimonelli M; Saccone C
    Nucleic Acids Res; 1992 Jun; 20(11):2871-5. PubMed ID: 1614873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eukaryotic promoter recognition by binding sites for transcription factors.
    Kondrakhin YV; Kel AE; Kolchanov NA; Romashchenko AG; Milanesi L
    Comput Appl Biosci; 1995 Oct; 11(5):477-88. PubMed ID: 8590170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer tool FUNSITE for analysis of eukaryotic regulatory genomic sequences.
    Kel AE; Kondrakhin YV; Kolpakov PhA ; Kel OV; Romashenko AG; Wingender E; Milanesi L; Kolchanov NA
    Proc Int Conf Intell Syst Mol Biol; 1995; 3():197-205. PubMed ID: 7584437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Weight matrix descriptions of four eukaryotic RNA polymerase II promoter elements derived from 502 unrelated promoter sequences.
    Bucher P
    J Mol Biol; 1990 Apr; 212(4):563-78. PubMed ID: 2329577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting Pol II promoter sequences using transcription factor binding sites.
    Prestridge DS
    J Mol Biol; 1995 Jun; 249(5):923-32. PubMed ID: 7791218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating extended regulatory regions of genomic DNA sequences.
    Babenko VN; Kosarev PS; Vishnevsky OV; Levitsky VG; Basin VV; Frolov AS
    Bioinformatics; 1999; 15(7-8):644-53. PubMed ID: 10487872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SIMD parallelization of the WORDUP algorithm for detecting statistically significant patterns in DNA sequences.
    Liuni S; Prunella N; Pesole G; D'Orazio T; Stella E; Distante A
    Comput Appl Biosci; 1993 Dec; 9(6):701-7. PubMed ID: 8143157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MicroRNA promoter element discovery in Arabidopsis.
    Megraw M; Baev V; Rusinov V; Jensen ST; Kalantidis K; Hatzigeorgiou AG
    RNA; 2006 Sep; 12(9):1612-9. PubMed ID: 16888323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic extraction of position specific cooccurrence of transcription factor bindings on promoters.
    Tsunoda T; Takagi T
    Pac Symp Biocomput; 1998; ():252-63. PubMed ID: 9697187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional binding of the "TATA" box binding component of transcription factor TFIID to the -30 region of TATA-less promoters.
    Wiley SR; Kraus RJ; Mertz JE
    Proc Natl Acad Sci U S A; 1992 Jul; 89(13):5814-8. PubMed ID: 1321424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of functional DNA motifs via statistical over-representation.
    Frith MC; Fu Y; Yu L; Chen JF; Hansen U; Weng Z
    Nucleic Acids Res; 2004; 32(4):1372-81. PubMed ID: 14988425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of sequence motifs related to coexpression of genes using evolutionary computation.
    Fogel GB; Weekes DG; Varga G; Dow ER; Harlow HB; Onyia JE; Su C
    Nucleic Acids Res; 2004; 32(13):3826-35. PubMed ID: 15266008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleotide variation of regulatory motifs may lead to distinct expression patterns.
    Segal L; Lapidot M; Solan Z; Ruppin E; Pilpel Y; Horn D
    Bioinformatics; 2007 Jul; 23(13):i440-9. PubMed ID: 17646329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PromFD 1.0: a computer program that predicts eukaryotic pol II promoters using strings and IMD matrices.
    Chen QK; Hertz GZ; Stormo GD
    Comput Appl Biosci; 1997 Feb; 13(1):29-35. PubMed ID: 9088706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional promoter modules can be detected by formal models independent of overall nucleotide sequence similarity.
    Klingenhoff A; Frech K; Quandt K; Werner T
    Bioinformatics; 1999 Mar; 15(3):180-6. PubMed ID: 10222404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulatory motif discovery using a population clustering evolutionary algorithm.
    Lones M; Tyrrell A
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(3):403-414. PubMed ID: 17666760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. WeederH: an algorithm for finding conserved regulatory motifs and regions in homologous sequences.
    Pavesi G; Zambelli F; Pesole G
    BMC Bioinformatics; 2007 Feb; 8():46. PubMed ID: 17286865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composition-sensitive analysis of the human genome for regulatory signals.
    Kel-Margoulis OV; Tchekmenev D; Kel AE; Goessling E; Hornischer K; Lewicki-Potapov B; Wingender E
    In Silico Biol; 2003; 3(1-2):145-71. PubMed ID: 12954097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Condition-specific coregulation with cis-regulatory motifs and modules in the mouse genome.
    Choi D; Fang Y; Mathers WD
    Genomics; 2006 Apr; 87(4):500-8. PubMed ID: 16431075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcription Regulatory Regions Database (TRRD):its status in 1999.
    Kolchanov NA; Ananko EA; Podkolodnaya OA; Ignatieva EV; Stepanenko IL; Kel-Margoulis OV; Kel AE; Merkulova TI; Goryachkovskaya TN; Busygina TV; Kolpakov FA; Podkolodny NL; Naumochkin AN; Romashchenko AG
    Nucleic Acids Res; 1999 Jan; 27(1):303-6. PubMed ID: 9847210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.