These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 16149348)

  • 1. Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation.
    Yurkin MA; Semyanov KA; Tarasov PA; Chernyshev AV; Hoekstra AG; Maltsev VP
    Appl Opt; 2005 Sep; 44(25):5249-56. PubMed ID: 16149348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light scattering by neutrophils: model, simulation, and experiment.
    Orlova DY; Yurkin MA; Hoekstra AG; Maltsev VP
    J Biomed Opt; 2008; 13(5):054057. PubMed ID: 19021436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the discrete dipole approximation and the discrete source method for simulation of light scattering by red blood cells.
    Gilev KV; Eremina E; Yurkin MA; Maltsev VP
    Opt Express; 2010 Mar; 18(6):5681-90. PubMed ID: 20389584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-scattering properties of individual erythrocytes.
    Shvalov AN; Soini JT; Chernyshev AV; Tarasov PA; Soini E; Maltsev VP
    Appl Opt; 1999 Jan; 38(1):230-5. PubMed ID: 18305608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Individual Escherichia coli cells studied from light scattering with the scanning flow cytometer.
    Shvalov AN; Soini JT; Surovtsev IV; Kochneva GV; Sivolobova GF; Petrov AK; Maltsev VP
    Cytometry; 2000 Sep; 41(1):41-5. PubMed ID: 10942895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of light scattering by biconcave and deformed red blood cells with the invariant imbedding T-matrix method.
    Bi L; Yang P
    J Biomed Opt; 2013 May; 18(5):55001. PubMed ID: 23652343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical simulations of light scattering by red blood cells.
    Karlsson A; He J; Swartling J; Andersson-Engels S
    IEEE Trans Biomed Eng; 2005 Jan; 52(1):13-8. PubMed ID: 15651560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light scattering by multiple red blood cells.
    He J; Karlsson A; Swartling J; Andersson-Engels S
    J Opt Soc Am A Opt Image Sci Vis; 2004 Oct; 21(10):1953-61. PubMed ID: 15497423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Additivity of light-scattering patterns of aggregated biological particles.
    Moskalensky AE; Strokotov DI; Chernyshev AV; Maltsev VP; Yurkin MA
    J Biomed Opt; 2014 Aug; 19(8):085004. PubMed ID: 25104406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle classification from light scattering with the scanning flow cytometer.
    Shvalov AN; Surovtsev IV; Chernyshev AV; Soini JT; Maltsev VP
    Cytometry; 1999 Nov; 37(3):215-20. PubMed ID: 10520202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of optical properties of flowing blood using a photon-cell interactive Monte Carlo code: effects of red blood cells' orientation on light scattering.
    Sakota D; Takatani S
    J Biomed Opt; 2012 May; 17(5):057007. PubMed ID: 22612146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical Simulation of Light Propagation and Scattering in Turbid Biological Media.
    Lopatin VV; Priezzhev AV; Fedoseev VV
    Crit Rev Biomed Eng; 2017; 45(1-6):99-118. PubMed ID: 29953375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical simulation of light propagation and scattering in turbid biological media.
    Lopatin VV; Pnezzhev AV; Fedoseev VV
    Crit Rev Biomed Eng; 2001; 29(3):400-19. PubMed ID: 11730101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Angular distribution of light scattered by single biological cells and oriented particle agglomerates.
    Neukammer J; Gohlke C; Höpe A; Wessel T; Rinneberg H
    Appl Opt; 2003 Nov; 42(31):6388-97. PubMed ID: 14649283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of deformation of human red blood cells in flow cytometry: measurement and simulation of bimodal forward scatter distributions.
    Gienger J; Gross H; Ost V; Bär M; Neukammer J
    Biomed Opt Express; 2019 Sep; 10(9):4531-4550. PubMed ID: 31565508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light distribution in the erythrocyte under laser irradiation: a finite-difference time-domain calculation.
    Wang XQ; Yu JT; Wang PN; Chen JY
    Appl Opt; 2008 Aug; 47(22):4037-44. PubMed ID: 18670560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective phase function for light scattered by blood.
    Turcu I
    Appl Opt; 2006 Feb; 45(4):639-47. PubMed ID: 16485674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarized light-scattering profile-advanced characterization of nonspherical particles with scanning flow cytometry.
    Strokotov DI; Moskalensky AE; Nekrasov VM; Maltsev VP
    Cytometry A; 2011 Jul; 79(7):570-9. PubMed ID: 21548080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion.
    Tsubota K; Wada S; Liu H
    Biomech Model Mechanobiol; 2014 Aug; 13(4):735-46. PubMed ID: 24104211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method.
    Lu JQ; Yang P; Hu XH
    J Biomed Opt; 2005; 10(2):024022. PubMed ID: 15910095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.