BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 16149348)

  • 1. Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation.
    Yurkin MA; Semyanov KA; Tarasov PA; Chernyshev AV; Hoekstra AG; Maltsev VP
    Appl Opt; 2005 Sep; 44(25):5249-56. PubMed ID: 16149348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light scattering by neutrophils: model, simulation, and experiment.
    Orlova DY; Yurkin MA; Hoekstra AG; Maltsev VP
    J Biomed Opt; 2008; 13(5):054057. PubMed ID: 19021436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the discrete dipole approximation and the discrete source method for simulation of light scattering by red blood cells.
    Gilev KV; Eremina E; Yurkin MA; Maltsev VP
    Opt Express; 2010 Mar; 18(6):5681-90. PubMed ID: 20389584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-scattering properties of individual erythrocytes.
    Shvalov AN; Soini JT; Chernyshev AV; Tarasov PA; Soini E; Maltsev VP
    Appl Opt; 1999 Jan; 38(1):230-5. PubMed ID: 18305608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Individual Escherichia coli cells studied from light scattering with the scanning flow cytometer.
    Shvalov AN; Soini JT; Surovtsev IV; Kochneva GV; Sivolobova GF; Petrov AK; Maltsev VP
    Cytometry; 2000 Sep; 41(1):41-5. PubMed ID: 10942895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of light scattering by biconcave and deformed red blood cells with the invariant imbedding T-matrix method.
    Bi L; Yang P
    J Biomed Opt; 2013 May; 18(5):55001. PubMed ID: 23652343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical simulations of light scattering by red blood cells.
    Karlsson A; He J; Swartling J; Andersson-Engels S
    IEEE Trans Biomed Eng; 2005 Jan; 52(1):13-8. PubMed ID: 15651560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light scattering by multiple red blood cells.
    He J; Karlsson A; Swartling J; Andersson-Engels S
    J Opt Soc Am A Opt Image Sci Vis; 2004 Oct; 21(10):1953-61. PubMed ID: 15497423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Additivity of light-scattering patterns of aggregated biological particles.
    Moskalensky AE; Strokotov DI; Chernyshev AV; Maltsev VP; Yurkin MA
    J Biomed Opt; 2014 Aug; 19(8):085004. PubMed ID: 25104406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle classification from light scattering with the scanning flow cytometer.
    Shvalov AN; Surovtsev IV; Chernyshev AV; Soini JT; Maltsev VP
    Cytometry; 1999 Nov; 37(3):215-20. PubMed ID: 10520202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of optical properties of flowing blood using a photon-cell interactive Monte Carlo code: effects of red blood cells' orientation on light scattering.
    Sakota D; Takatani S
    J Biomed Opt; 2012 May; 17(5):057007. PubMed ID: 22612146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical Simulation of Light Propagation and Scattering in Turbid Biological Media.
    Lopatin VV; Priezzhev AV; Fedoseev VV
    Crit Rev Biomed Eng; 2017; 45(1-6):99-118. PubMed ID: 29953375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical simulation of light propagation and scattering in turbid biological media.
    Lopatin VV; Pnezzhev AV; Fedoseev VV
    Crit Rev Biomed Eng; 2001; 29(3):400-19. PubMed ID: 11730101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Angular distribution of light scattered by single biological cells and oriented particle agglomerates.
    Neukammer J; Gohlke C; Höpe A; Wessel T; Rinneberg H
    Appl Opt; 2003 Nov; 42(31):6388-97. PubMed ID: 14649283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of deformation of human red blood cells in flow cytometry: measurement and simulation of bimodal forward scatter distributions.
    Gienger J; Gross H; Ost V; Bär M; Neukammer J
    Biomed Opt Express; 2019 Sep; 10(9):4531-4550. PubMed ID: 31565508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light distribution in the erythrocyte under laser irradiation: a finite-difference time-domain calculation.
    Wang XQ; Yu JT; Wang PN; Chen JY
    Appl Opt; 2008 Aug; 47(22):4037-44. PubMed ID: 18670560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective phase function for light scattered by blood.
    Turcu I
    Appl Opt; 2006 Feb; 45(4):639-47. PubMed ID: 16485674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarized light-scattering profile-advanced characterization of nonspherical particles with scanning flow cytometry.
    Strokotov DI; Moskalensky AE; Nekrasov VM; Maltsev VP
    Cytometry A; 2011 Jul; 79(7):570-9. PubMed ID: 21548080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion.
    Tsubota K; Wada S; Liu H
    Biomech Model Mechanobiol; 2014 Aug; 13(4):735-46. PubMed ID: 24104211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method.
    Lu JQ; Yang P; Hu XH
    J Biomed Opt; 2005; 10(2):024022. PubMed ID: 15910095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.