These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 16149348)

  • 21. Single-particle sizing from light scattering by spectral decomposition.
    Semyanov KA; Tarasov PA; Zharinov AE; Chernyshev AV; Hoekstra AG; Maltsev VP
    Appl Opt; 2004 Sep; 43(26):5110-5. PubMed ID: 15468713
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Scattering of he-ne laser light by an average-sized red blood cell.
    Tsinopoulos SV; Polyzos D
    Appl Opt; 1999 Sep; 38(25):5499-510. PubMed ID: 18324059
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Static and dynamic light scattering by red blood cells: A numerical study.
    Mauer J; Peltomäki M; Poblete S; Gompper G; Fedosov DA
    PLoS One; 2017; 12(5):e0176799. PubMed ID: 28472125
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dependence of transverse and longitudinal resolutions on incident Gaussian beam widths in the illumination part of optical scanning microscopy.
    Chon HS; Park G; Lee SB; Yoon S; Kim J; Lee JH; An K
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jan; 24(1):60-7. PubMed ID: 17164843
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aggregation of red blood cells in suspension: study by light-scattering technique at small angles.
    Pop CV; Neamtu S
    J Biomed Opt; 2008; 13(4):041308. PubMed ID: 19021316
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Advanced consumable-free morphological analysis of intact red blood cells by a compact scanning flow cytometer.
    Gilev KV; Yastrebova ES; Strokotov DI; Yurkin MA; Karmadonova NA; Chernyshev AV; Lomivorotov VV; Maltsev VP
    Cytometry A; 2017 Sep; 91(9):867-873. PubMed ID: 28544427
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three-dimensional light-scattering and deformation of individual biconcave human blood cells in optical tweezers.
    Yu L; Sheng Y; Chiou A
    Opt Express; 2013 May; 21(10):12174-84. PubMed ID: 23736438
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calibration-free method to determine the size and hemoglobin concentration of individual red blood cells from light scattering.
    Sem'yanov KA; Tarasov PA; Soini JT; Petrov AK; Maltsev VP
    Appl Opt; 2000 Nov; 39(31):5884-9. PubMed ID: 18354592
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accurate measurement of volume and shape of resting and activated blood platelets from light scattering.
    Moskalensky AE; Yurkin MA; Konokhova AI; Strokotov DI; Nekrasov VM; Chernyshev AV; Tsvetovskaya GA; Chikova ED; Maltsev VP
    J Biomed Opt; 2013 Jan; 18(1):17001. PubMed ID: 23288415
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of red cell clustering and anisotropy on ultrasound blood backscatter: a Monte Carlo study.
    Savéry D; Cloutier G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jan; 52(1):94-103. PubMed ID: 15742565
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamical clustering of red blood cells in capillary vessels.
    Boryczko K; Dzwinel W; Yuen DA
    J Mol Model; 2003 Feb; 9(1):16-33. PubMed ID: 12638008
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Angle-resolved light scattering of single human chromosomes: experiments and simulations.
    Müller D; Geiger D; Stark J; Kienle A
    Phys Med Biol; 2019 Feb; 64(4):045016. PubMed ID: 30630136
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Label-Free Analysis of Red Blood Cell Storage Lesions Using Imaging Flow Cytometry.
    Pinto RN; Sebastian JA; Parsons MJ; Chang TC; Turner TR; Acker JP; Kolios MC
    Cytometry A; 2019 Sep; 95(9):976-984. PubMed ID: 31294512
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Numerical simulation of transient dynamic behavior of healthy and hardened red blood cells in microcapillary flow.
    Hashemi Z; Rahnama M
    Int J Numer Method Biomed Eng; 2016 Nov; 32(11):. PubMed ID: 26729644
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Confocal backscattering-based detection of leukemic cells in flowing blood samples.
    Greiner C; Hunter M; Rius F; Huang P; Georgakoudi I
    Cytometry A; 2011 Oct; 79(10):874-83. PubMed ID: 21638765
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Boundary element simulation of backscattering properties for red blood with high frequency ultrasonic transducers.
    Wu SJ; Kuo I; Shung KK
    Ultrasonics; 2005 Jan; 43(3):145-51. PubMed ID: 15556649
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-precision characterization of individual E. coli cell morphology by scanning flow cytometry.
    Konokhova AI; Gelash AA; Yurkin MA; Chernyshev AV; Maltsev VP
    Cytometry A; 2013 Jun; 83(6):568-75. PubMed ID: 23568828
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Artifacts resulting from imaging in scattering media: a theoretical prediction.
    Rohrbach A
    Opt Lett; 2009 Oct; 34(19):3041-3. PubMed ID: 19794809
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Light scattering by aggregated red blood cells.
    Tsinopoulos SV; Sellountos EJ; Polyzos D
    Appl Opt; 2002 Mar; 41(7):1408-17. PubMed ID: 11900021
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rheology and ultrasound scattering from aggregated red cell suspensions in shear flow.
    Haider L; Snabre P; Boynard M
    Biophys J; 2004 Oct; 87(4):2322-34. PubMed ID: 15454433
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.