These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 16149351)

  • 1. Numerical study of light scattering by a boundary-layer flow.
    Bogucki DJ; Domaradzki JA
    Appl Opt; 2005 Sep; 44(25):5286-91. PubMed ID: 16149351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of near-forward light scattering on oceanic turbulence and particles.
    Bogucki DJ; Domaradzki JA; Stramski D; Zaneveld JR
    Appl Opt; 1998 Jul; 37(21):4669-77. PubMed ID: 18285924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light scattering on oceanic turbulence.
    Bogucki DJ; Domaradzki JA; Ecke RE; Truman CR
    Appl Opt; 2004 Oct; 43(30):5662-8. PubMed ID: 15534998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo simulation of propagation of a short light beam through turbulent oceanic flow.
    Bogucki DJ; Piskozub J; Carr ME; Spiers GD
    Opt Express; 2007 Oct; 15(21):13988-96. PubMed ID: 19550672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical study on the influence of wall temperature gradient on aerodynamic characteristics of low aspect ratio flying wing configuration.
    Lin P; Liu X; Xiong N; Wang X; Shang M; Liu G; Tao Y
    Sci Rep; 2021 Aug; 11(1):16295. PubMed ID: 34381068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation study on light propagation in an isotropic turbulence field of the mixed layer.
    Yuan R; Sun J; Luo T; Wu X; Wang C; Lu C
    Opt Express; 2014 Mar; 22(6):7194-209. PubMed ID: 24664068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical measurement of rates of dissipation of temperature variance due to oceanic turbulence.
    Bogucki DJ; Domaradzki JA; Anderson C; Wijesekera HW; Zaneveld RV; Moore C
    Opt Express; 2007 Jun; 15(12):7224-30. PubMed ID: 19547043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Body surface adaptations to boundary-layer dynamics.
    Videler JJ
    Symp Soc Exp Biol; 1995; 49():1-20. PubMed ID: 8571218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling high Reynolds number wall-turbulence interactions in laboratory experiments using large-scale free-stream turbulence.
    Dogan E; Hearst RJ; Ganapathisubramani B
    Philos Trans A Math Phys Eng Sci; 2017 Mar; 375(2089):. PubMed ID: 28167584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of free-stream turbulence on boundary layer transition.
    Goldstein ME
    Philos Trans A Math Phys Eng Sci; 2014 Jul; 372(2020):. PubMed ID: 24936008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sedimentary microbial oxygen demand for laminar flow over a sediment bed of finite length.
    Higashino M; Stefan HG
    Water Res; 2005 Sep; 39(14):3153-66. PubMed ID: 16054191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towed body measurements of flow noise from a turbulent boundary layer under sea conditions.
    Abshagen J; Nejedl V
    J Acoust Soc Am; 2014 Feb; 135(2):637-45. PubMed ID: 25234873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Turbulence comes in bursts in stably stratified flows.
    Rorai C; Mininni PD; Pouquet A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043002. PubMed ID: 24827327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research on aero-optical prediction of supersonic turbulent boundary layer based on aero-optical linking equation.
    Ding H; Yi S; Zhao X; Yi J; He L
    Opt Express; 2018 Nov; 26(24):31317-31332. PubMed ID: 30650720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relative effects of particles and turbulence on acoustic scattering from deep-sea hydrothermal vent plumes.
    Xu G; Di Iorio D
    J Acoust Soc Am; 2011 Oct; 130(4):1856-67. PubMed ID: 21973340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure of turbulence in a rapid tidal flow.
    Milne IA; Sharma RN; Flay RGJ
    Proc Math Phys Eng Sci; 2017 Aug; 473(2204):20170295. PubMed ID: 28878563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feather roughness reduces flow separation during low Reynolds number glides of swifts.
    van Bokhorst E; de Kat R; Elsinga GE; Lentink D
    J Exp Biol; 2015 Oct; 218(Pt 20):3179-91. PubMed ID: 26347563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experiment on a confined electrically driven vortex pair.
    Klein R; Pothérat A; Alferenok A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):016304. PubMed ID: 19257136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase relations in a forced turbulent boundary layer: implications for modelling of high Reynolds number wall turbulence.
    Duvvuri S; McKeon B
    Philos Trans A Math Phys Eng Sci; 2017 Mar; 375(2089):. PubMed ID: 28167576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the turbulence structure of deep katabatic flows on a gentle mesoscale slope.
    Stiperski I; Holtslag AAM; Lehner M; Hoch SW; Whiteman CD
    Q J R Meteorol Soc; 2020 Apr; 146(728):1206-1231. PubMed ID: 33208984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.