These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 16150585)

  • 61. Top-down meets bottom-up: dip-pen nanolithography and DNA-directed assembly of nanoscale electrical circuits.
    Chung SW; Ginger DS; Morales MW; Zhang Z; Chandrasekhar V; Ratner MA; Mirkin CA
    Small; 2005 Jan; 1(1):64-9. PubMed ID: 17193349
    [No Abstract]   [Full Text] [Related]  

  • 62. A unique physical-chemistry approach for fabricating cell friendly surfaces.
    Irvine S; Sullivan AC; McEwan JR; Jayasinghe SN
    Biotechnol J; 2008 Jan; 3(1):124-8. PubMed ID: 17722180
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Applications of carbon nanotubes in neurobiology.
    Malarkey EB; Parpura V
    Neurodegener Dis; 2007; 4(4):292-9. PubMed ID: 17627132
    [TBL] [Abstract][Full Text] [Related]  

  • 64. From microdroplets to microfluidics: selective emulsion separation in microfluidic devices.
    Fidalgo LM; Whyte G; Bratton D; Kaminski CF; Abell C; Huck WT
    Angew Chem Int Ed Engl; 2008; 47(11):2042-5. PubMed ID: 18264960
    [No Abstract]   [Full Text] [Related]  

  • 65. Programmable chemical gradient patterns by soft grayscale lithography.
    Bowen AM; Ritchey JA; Moore JS; Nuzzo RG
    Small; 2011 Dec; 7(23):3350-62. PubMed ID: 21997925
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Electroosmotic flow analysis of a branched U-turn nanofluidic device.
    Parikesit GO; Markesteijn AP; Kutchoukov VG; Piciu O; Bossche A; Westerweel J; Garini Y; Young IT
    Lab Chip; 2005 Oct; 5(10):1067-74. PubMed ID: 16175262
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Integrated single-walled carbon nanotube/microfluidic devices for the study of the sensing mechanism of nanotube sensors.
    Fu Q; Liu J
    J Phys Chem B; 2005 Jul; 109(28):13406-8. PubMed ID: 16852676
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Remote temperature measurements in femto-liter volumes using dual-focus-Fluorescence Correlation Spectroscopy.
    Müller CB; Weiss K; Loman A; Enderlein J; Richtering W
    Lab Chip; 2009 May; 9(9):1248-53. PubMed ID: 19370244
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Nanofluidics in lab-on-a-chip devices.
    Kovarik ML; Jacobson SC
    Anal Chem; 2009 Sep; 81(17):7133-40. PubMed ID: 19663470
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Phase separation micromolding: a new generic approach for microstructuring various materials.
    Vogelaar L; Lammertink RG; Barsema JN; Nijdam W; Bolhuis-Versteeg LA; van Rijn CJ; Wessling M
    Small; 2005 Jun; 1(6):645-55. PubMed ID: 17193501
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Microfluidic exploration of the phase diagram of a surfactant/water binary system.
    Leng J; Joanicot M; Ajdari A
    Langmuir; 2007 Feb; 23(5):2315-7. PubMed ID: 17266344
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Introduction: mixing in microfluidics.
    Ottino JM; Wiggins S
    Philos Trans A Math Phys Eng Sci; 2004 May; 362(1818):923-35. PubMed ID: 15306477
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Monitoring and mapping imperfections in silane-based self-assembled monolayers by chemical amplification.
    Jalali H; Gates BD
    Langmuir; 2009 Aug; 25(16):9078-84. PubMed ID: 19591479
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Recent advances in self-assembled monolayers based biomolecular electronic devices.
    Arya SK; Solanki PR; Datta M; Malhotra BD
    Biosens Bioelectron; 2009 May; 24(9):2810-7. PubMed ID: 19339167
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Microfluidics/CMOS orthogonal capabilities for cell biology.
    Linder V; Koster S; Franks W; Kraus T; Verpoorte E; Heer F; Hierlemann A; de Rooij NF
    Biomed Microdevices; 2006 Jun; 8(2):159-66. PubMed ID: 16688575
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Microfluidics in the "open space" for performing localized chemistry on biological interfaces.
    Kaigala GV; Lovchik RD; Delamarche E
    Angew Chem Int Ed Engl; 2012 Nov; 51(45):11224-40. PubMed ID: 23111955
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Zooming in to see the bigger picture: microfluidic and nanofabrication tools to study bacteria.
    Hol FJ; Dekker C
    Science; 2014 Oct; 346(6208):1251821. PubMed ID: 25342809
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Self-assembled selenium monolayers: from nanotechnology to materials science and adaptive catalysis.
    Romashov LV; Ananikov VP
    Chemistry; 2013 Dec; 19(52):17640-60. PubMed ID: 24288138
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Microfluidic assay to quantify the adhesion of marine bacteria.
    Arpa-Sancet MP; Christophis C; Rosenhahn A
    Biointerphases; 2012 Dec; 7(1-4):26. PubMed ID: 22589069
    [TBL] [Abstract][Full Text] [Related]  

  • 80. BioMEMS and cellular biology: perspectives and applications.
    Folch A
    J Vis Exp; 2007; (8):300. PubMed ID: 18989409
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.