These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

493 related articles for article (PubMed ID: 16150594)

  • 41. AFLP studies on downy-mildew-resistant and downy-mildew-susceptible genotypes of opium poppy.
    Dubey MK; Shasany AK; Dhawan OP; Shukla AK; Khanuja SP
    J Genet; 2010 Apr; 89(1):9-19. PubMed ID: 20505242
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phase transitions and bistability in honeybee foraging dynamics.
    Loengarov A; Tereshko V
    Artif Life; 2008; 14(1):111-20. PubMed ID: 18171134
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Honeybee methodology, cognition, and theory: recording local directional decisions in interpatch foraging and interpreting their theoretical relevance.
    Najera DA; Jander R
    Anim Cogn; 2012 Mar; 15(2):251-63. PubMed ID: 21912853
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pollen foraging: learning a complex motor skill by bumblebees (Bombus terrestris).
    Raine NE; Chittka L
    Naturwissenschaften; 2007 Jun; 94(6):459-64. PubMed ID: 17149583
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Environmental effects on morphine content in opium poppy (Papaver somniferum L.).
    Kaicker US; Saini HC; Singh HP; Choudhury B
    Bull Narc; 1978; 30(3):69-74. PubMed ID: 256522
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of a flavoprotein oxidase from opium poppy catalyzing the final steps in sanguinarine and papaverine biosynthesis.
    Hagel JM; Beaudoin GA; Fossati E; Ekins A; Martin VJ; Facchini PJ
    J Biol Chem; 2012 Dec; 287(51):42972-83. PubMed ID: 23118227
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Amino acid content and nectar choice by forager honeybees (Apis mellifera L.).
    Bertazzini M; Medrzycki P; Bortolotti L; Maistrello L; Forlani G
    Amino Acids; 2010 Jun; 39(1):315-8. PubMed ID: 20091414
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Analgesia: morphine-pathway block in top1 poppies.
    Millgate AG; Pogson BJ; Wilson IW; Kutchan TM; Zenk MH; Gerlach WL; Fist AJ; Larkin PJ
    Nature; 2004 Sep; 431(7007):413-4. PubMed ID: 15386001
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Exploratory studies of inhibitory conditioning in honeybees (Apis mellifera).
    Couvillon PA; Ablan CD; Bitterman ME
    J Exp Psychol Anim Behav Process; 1999 Jan; 25(1):103-12. PubMed ID: 9987861
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of diagnostic SNP markers and a novel SNP genotyping assay for distinguishing opium poppies.
    Chang M; Kim JY; Lee H; Lee EJ; Lee WH; Moon S; Choe S; Choung CM
    Forensic Sci Int; 2022 Oct; 339():111416. PubMed ID: 35985139
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Functional characterization of a novel benzylisoquinoline O-methyltransferase suggests its involvement in papaverine biosynthesis in opium poppy (Papaver somniferum L).
    Pienkny S; Brandt W; Schmidt J; Kramell R; Ziegler J
    Plant J; 2009 Oct; 60(1):56-67. PubMed ID: 19500305
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Genetic analysis of capsule and its associated economic traits in opium poppy (Papaver somniferum L.).
    Kumar B; Patra NK
    J Hered; 2010; 101(5):657-60. PubMed ID: 20472706
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Suspected opium poisoning in two young dogs].
    Odendaal JS
    J S Afr Vet Assoc; 1986 Jun; 57(2):113-4. PubMed ID: 3795223
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Isoquinoline alkaloid production by transformed cultures of Papaver somniferum.
    Yoshimatsu K; Shimomura K
    Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku; 2001; (119):52-6. PubMed ID: 11915285
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development of SSR and SNP markers for identifying opium poppy.
    Zhang Y; Wang J; Yang L; Niu J; Huang R; Yuan F; Liang Q
    Int J Legal Med; 2022 Sep; 136(5):1261-1271. PubMed ID: 35316386
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The opium poppy genome and morphinan production.
    Guo L; Winzer T; Yang X; Li Y; Ning Z; He Z; Teodor R; Lu Y; Bowser TA; Graham IA; Ye K
    Science; 2018 Oct; 362(6412):343-347. PubMed ID: 30166436
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Insights into opium poppy (Papaver spp.) genetic diversity from genotyping-by-sequencing analysis.
    Hong UVT; Tamiru-Oli M; Hurgobin B; Okey CR; Abreu AR; Lewsey MG
    Sci Rep; 2022 Jan; 12(1):111. PubMed ID: 34997061
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Behavioural mimicry of honeybees (Apis mellifera) by droneflies (Diptera: Syrphidae: Eristalis spp.).
    Golding YC; Edmunds M
    Proc Biol Sci; 2000 May; 267(1446):903-9. PubMed ID: 10853733
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metabolic engineering of morphinan alkaloids by over-expression and RNAi suppression of salutaridinol 7-O-acetyltransferase in opium poppy.
    Allen RS; Miller JA; Chitty JA; Fist AJ; Gerlach WL; Larkin PJ
    Plant Biotechnol J; 2008 Jan; 6(1):22-30. PubMed ID: 17854406
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [On the productivity of the disease resistant strains in opium poppy (Papaver somniferum L.) (author's transl)].
    Ohno T; Kinoshita K; Komine T
    Eisei Shikenjo Hokoku; 1977; (95):30-3. PubMed ID: 608024
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.