These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 16150966)

  • 1. Effect of temperature on the nanomechanics of lipid bilayers studied by force spectroscopy.
    Garcia-Manyes S; Oncins G; Sanz F
    Biophys J; 2005 Dec; 89(6):4261-74. PubMed ID: 16150966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of ion-binding and chemical phospholipid structure on the nanomechanics of lipid bilayers studied by force spectroscopy.
    Garcia-Manyes S; Oncins G; Sanz F
    Biophys J; 2005 Sep; 89(3):1812-26. PubMed ID: 15980180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: A two-photon fluorescence microscopy study.
    Bagatolli LA; Gratton E
    Biophys J; 2000 Jul; 79(1):434-47. PubMed ID: 10866969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct visualization of asymmetric behavior in supported lipid bilayers at the gel-fluid phase transition.
    Feng ZV; Spurlin TA; Gewirth AA
    Biophys J; 2005 Mar; 88(3):2154-64. PubMed ID: 15596519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal response of Langmuir-Blodgett films of dipalmitoylphosphatidylcholine studied by atomic force microscopy and force spectroscopy.
    Oncins G; Picas L; Hernández-Borrell J; Garcia-Manyes S; Sanz F
    Biophys J; 2007 Oct; 93(8):2713-25. PubMed ID: 17586574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic force microscope studies of the fusion of floating lipid bilayers.
    Abdulreda MH; Moy VT
    Biophys J; 2007 Jun; 92(12):4369-78. PubMed ID: 17400691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gel-to-fluid phase transformations in solid-supported phospholipid bilayers assembled by the Langmuir-Blodgett technique: effect of the Langmuir monolayer phase state and molecular density.
    Ramkaran M; Badia A
    J Phys Chem B; 2014 Aug; 118(32):9708-21. PubMed ID: 25059993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionic strength and composition govern the elasticity of biological membranes. A study of model DMPC bilayers by force- and transmission IR spectroscopy.
    Šegota S; Vojta D; Pletikapić G; Baranović G
    Chem Phys Lipids; 2015 Feb; 186():17-29. PubMed ID: 25447291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase behavior and nanoscale structure of phospholipid membranes incorporated with acylated C14-peptides.
    Pedersen TB; Kaasgaard T; Jensen MØ; Frokjaer S; Mouritsen OG; Jørgensen K
    Biophys J; 2005 Oct; 89(4):2494-503. PubMed ID: 16100273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structured water layers adjacent to biological membranes.
    Higgins MJ; Polcik M; Fukuma T; Sader JE; Nakayama Y; Jarvis SP
    Biophys J; 2006 Oct; 91(7):2532-42. PubMed ID: 16798815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoupled phase transitions and grain-boundary melting in supported phospholipid bilayers.
    Keller D; Larsen NB; Møller IM; Mouritsen OG
    Phys Rev Lett; 2005 Jan; 94(2):025701. PubMed ID: 15698195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic force microscopy study of thick lamellar stacks of phospholipid bilayers.
    Schäfer A; Salditt T; Rheinstädter MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021905. PubMed ID: 18352049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature induced lipid membrane restructuring and changes in nanomechanics.
    Bhojoo U; Chen M; Zou S
    Biochim Biophys Acta Biomembr; 2018 Mar; 1860(3):700-709. PubMed ID: 29248477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of phase transitions of saturated phosphocholine lipid bilayers via molecular dynamics simulations.
    Khakbaz P; Klauda JB
    Biochim Biophys Acta Biomembr; 2018 Aug; 1860(8):1489-1501. PubMed ID: 29709614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane thinning due to antimicrobial peptide binding: an atomic force microscopy study of MSI-78 in lipid bilayers.
    Mecke A; Lee DK; Ramamoorthy A; Orr BG; Banaszak Holl MM
    Biophys J; 2005 Dec; 89(6):4043-50. PubMed ID: 16183881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pressure-induced ordering in mixed-lipid bilayers.
    Brown A; Skanes I; Morrow MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 1):011913. PubMed ID: 14995653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanomechanical recognition of sphingomyelin-rich membrane domains by atomic force microscopy.
    Wang T; Shogomori H; Hara M; Yamada T; Kobayashi T
    Biochemistry; 2012 Jan; 51(1):74-82. PubMed ID: 22148674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Force spectroscopy reveals the effect of different ions in the nanomechanical behavior of phospholipid model membranes: the case of potassium cation.
    Redondo-Morata L; Oncins G; Sanz F
    Biophys J; 2012 Jan; 102(1):66-74. PubMed ID: 22225799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid lateral diffusion in bilayers with phosphatidylcholine, sphingomyelin and cholesterol. An NMR study of dynamics and lateral phase separation.
    Lindblom G; Orädd G; Filippov A
    Chem Phys Lipids; 2006 Jun; 141(1-2):179-84. PubMed ID: 16580657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-Dependent Partitioning of Coumarin 152 in Phosphatidylcholine Lipid Bilayers.
    Gobrogge CA; Blanchard HS; Walker RA
    J Phys Chem B; 2017 Apr; 121(16):4061-4070. PubMed ID: 28350163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.