These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 16150973)

  • 1. Interfacial tryptophan residues: a role for the cation-pi effect?
    Petersen FN; Jensen MØ; Nielsen CH
    Biophys J; 2005 Dec; 89(6):3985-96. PubMed ID: 16150973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylethanolamine Bilayers.
    Liu F; Lewis RN; Hodges RS; McElhaney RN
    Biophys J; 2004 Oct; 87(4):2470-82. PubMed ID: 15454444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Indole localization in lipid membranes revealed by molecular simulation.
    Norman KE; Nymeyer H
    Biophys J; 2006 Sep; 91(6):2046-54. PubMed ID: 16815896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane Interactions of hIAPP Monomer and Oligomer with Lipid Membranes by Molecular Dynamics Simulations.
    Zhang M; Ren B; Liu Y; Liang G; Sun Y; Xu L; Zheng J
    ACS Chem Neurosci; 2017 Aug; 8(8):1789-1800. PubMed ID: 28585804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity and Resilience of Phosphatidylcholine and Phosphatidylethanolamine Lipid Membranes against Cholinium Glycinate Biocompatible Ionic Liquid.
    Kumari P; Kashyap HK
    J Phys Chem B; 2019 May; 123(21):4550-4561. PubMed ID: 31059265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulations of pentapeptides at interfaces: salt bridge and cation-pi interactions.
    Aliste MP; MacCallum JL; Tieleman DP
    Biochemistry; 2003 Aug; 42(30):8976-87. PubMed ID: 12885230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphatidylethanolamine-phosphatidylglycerol bilayer as a model of the inner bacterial membrane.
    Murzyn K; Róg T; Pasenkiewicz-Gierula M
    Biophys J; 2005 Feb; 88(2):1091-103. PubMed ID: 15556990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane.
    Gurtovenko AA; Vattulainen I
    J Phys Chem B; 2008 Feb; 112(7):1953-62. PubMed ID: 18225878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for superlattice arrangements in fluid phosphatidylcholine/phosphatidylethanolamine bilayers.
    Cheng KH; Ruonala M; Virtanen J; Somerharju P
    Biophys J; 1997 Oct; 73(4):1967-76. PubMed ID: 9336192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular characterization of gel and liquid-crystalline structures of fully hydrated POPC and POPE bilayers.
    Leekumjorn S; Sum AK
    J Phys Chem B; 2007 May; 111(21):6026-33. PubMed ID: 17488110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfacial anchor properties of tryptophan residues in transmembrane peptides can dominate over hydrophobic matching effects in peptide-lipid interactions.
    de Planque MR; Bonev BB; Demmers JA; Greathouse DV; Koeppe RE; Separovic F; Watts A; Killian JA
    Biochemistry; 2003 May; 42(18):5341-8. PubMed ID: 12731875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A coarse-grained approach to studying the interactions of the antimicrobial peptides aurein 1.2 and maculatin 1.1 with POPG/POPE lipid mixtures.
    Balatti GE; Martini MF; Pickholz M
    J Mol Model; 2018 Jul; 24(8):208. PubMed ID: 30019106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulations of the adenosine A2a receptor in POPC and POPE lipid bilayers: effects of membrane on protein behavior.
    Ng HW; Laughton CA; Doughty SW
    J Chem Inf Model; 2014 Feb; 54(2):573-81. PubMed ID: 24460123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylglycerol bilayers.
    Liu F; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 2004 Mar; 43(12):3679-87. PubMed ID: 15035638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Importance of indole N-H hydrogen bonding in the organization and dynamics of gramicidin channels.
    Chaudhuri A; Haldar S; Sun H; Koeppe RE; Chattopadhyay A
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):419-28. PubMed ID: 24148157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding and insertion of alpha-helical anti-microbial peptides in POPC bilayers studied by molecular dynamics simulations.
    Kandasamy SK; Larson RG
    Chem Phys Lipids; 2004 Nov; 132(1):113-32. PubMed ID: 15530453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The preference of tryptophan for membrane interfaces.
    Yau WM; Wimley WC; Gawrisch K; White SH
    Biochemistry; 1998 Oct; 37(42):14713-8. PubMed ID: 9778346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid-protein interactions of integral membrane proteins: a comparative simulation study.
    Deol SS; Bond PJ; Domene C; Sansom MS
    Biophys J; 2004 Dec; 87(6):3737-49. PubMed ID: 15465855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of membrane-protein interactions for the leucine transporter from Aquifex aeolicus by molecular dynamics calculations.
    Pantano DA; Klein ML
    J Phys Chem B; 2009 Oct; 113(42):13715-22. PubMed ID: 19445452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of pentachlorophenol in phospholipid bilayers: a molecular dynamics study.
    Mukhopadhyay P; Vogel HJ; Tieleman DP
    Biophys J; 2004 Jan; 86(1 Pt 1):337-45. PubMed ID: 14695275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.