BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 16151019)

  • 41. Inactivation of Smad5 in endothelial cells and smooth muscle cells demonstrates that Smad5 is required for cardiac homeostasis.
    Umans L; Cox L; Tjwa M; Bito V; Vermeire L; Laperre K; Sipido K; Moons L; Huylebroeck D; Zwijsen A
    Am J Pathol; 2007 May; 170(5):1460-72. PubMed ID: 17456754
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multifarious molecular signaling cascades of cardiac hypertrophy: can the muddy waters be cleared?
    Balakumar P; Jagadeesh G
    Pharmacol Res; 2010 Nov; 62(5):365-83. PubMed ID: 20643208
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A new type of ERK1/2 autophosphorylation causes cardiac hypertrophy.
    Lorenz K; Schmitt JP; Schmitteckert EM; Lohse MJ
    Nat Med; 2009 Jan; 15(1):75-83. PubMed ID: 19060905
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Cellular signal transduction pathways in cardiac hypertrophy and heart failure].
    Lewartowski B; Mackiewicz U
    Kardiol Pol; 2006 Oct; 64(10 Suppl 6):S591-600. PubMed ID: 20527382
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Extracellular signal-regulated kinase (ERK) activation preserves cardiac function in pressure overload induced hypertrophy.
    Mutlak M; Schlesinger-Laufer M; Haas T; Shofti R; Ballan N; Lewis YE; Zuler M; Zohar Y; Caspi LH; Kehat I
    Int J Cardiol; 2018 Nov; 270():204-213. PubMed ID: 29857938
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhanced Galphaq signaling: a common pathway mediates cardiac hypertrophy and apoptotic heart failure.
    Adams JW; Sakata Y; Davis MG; Sah VP; Wang Y; Liggett SB; Chien KR; Brown JH; Dorn GW
    Proc Natl Acad Sci U S A; 1998 Aug; 95(17):10140-5. PubMed ID: 9707614
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cardiac hypertrophy: targeting Raf/MEK/ERK1/2-signaling.
    Lorenz K; Schmitt JP; Vidal M; Lohse MJ
    Int J Biochem Cell Biol; 2009 Dec; 41(12):2351-5. PubMed ID: 19666137
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Extracellular signal-regulated kinases 1 and 2 regulate the balance between eccentric and concentric cardiac growth.
    Kehat I; Davis J; Tiburcy M; Accornero F; Saba-El-Leil MK; Maillet M; York AJ; Lorenz JN; Zimmermann WH; Meloche S; Molkentin JD
    Circ Res; 2011 Jan; 108(2):176-83. PubMed ID: 21127295
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The alpha(1A/C)- and alpha(1B)-adrenergic receptors are required for physiological cardiac hypertrophy in the double-knockout mouse.
    O'Connell TD; Ishizaka S; Nakamura A; Swigart PM; Rodrigo MC; Simpson GL; Cotecchia S; Rokosh DG; Grossman W; Foster E; Simpson PC
    J Clin Invest; 2003 Jun; 111(11):1783-91. PubMed ID: 12782680
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The biochemical response of the heart to hypertension and exercise.
    Wakatsuki T; Schlessinger J; Elson EL
    Trends Biochem Sci; 2004 Nov; 29(11):609-17. PubMed ID: 15501680
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Angiogenesis and cardiac hypertrophy: maintenance of cardiac function and causative roles in heart failure.
    Oka T; Akazawa H; Naito AT; Komuro I
    Circ Res; 2014 Jan; 114(3):565-71. PubMed ID: 24481846
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Phosphoinositide 3-kinase(p110alpha) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy.
    McMullen JR; Shioi T; Zhang L; Tarnavski O; Sherwood MC; Kang PM; Izumo S
    Proc Natl Acad Sci U S A; 2003 Oct; 100(21):12355-60. PubMed ID: 14507992
    [TBL] [Abstract][Full Text] [Related]  

  • 53. MEK1-ERK1/2 signaling regulates the cardiomyocyte non-sarcomeric actin cytoskeletal network.
    Grimes KM; Maillet M; Swoboda CO; Bowers SLK; Millay DP; Molkentin JD
    Am J Physiol Heart Circ Physiol; 2024 Jan; 326(1):H180-H189. PubMed ID: 37999644
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Involvement of extracellular signal-regulated kinases 1/2 in cardiac hypertrophy and cell death.
    Bueno OF; Molkentin JD
    Circ Res; 2002 Nov; 91(9):776-81. PubMed ID: 12411391
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Myostatin regulates energy homeostasis in the heart and prevents heart failure.
    Biesemann N; Mendler L; Wietelmann A; Hermann S; Schäfers M; Krüger M; Boettger T; Borchardt T; Braun T
    Circ Res; 2014 Jul; 115(2):296-310. PubMed ID: 24807786
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Disruption of tumor necrosis factor receptor associated factor 5 exacerbates pressure overload cardiac hypertrophy and fibrosis.
    Bian Z; Dai J; Hiroyasu N; Guan H; Yuan Y; Gan L; Zhou H; Zong J; Zhang Y; Li F; Yan L; Shen D; Li H; Tang Q
    J Cell Biochem; 2014 Feb; 115(2):349-58. PubMed ID: 24038435
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [The pathophysiological mechanism of cardiac development and hypertrophy, and heart failure].
    Hasegawa H; Komuro I
    Nihon Rinsho; 2003 May; 61(5):704-7. PubMed ID: 12754991
    [No Abstract]   [Full Text] [Related]  

  • 58. Disruption of integrin function in the murine myocardium leads to perinatal lethality, fibrosis, and abnormal cardiac performance.
    Keller RS; Shai SY; Babbitt CJ; Pham CG; Solaro RJ; Valencik ML; Loftus JC; Ross RS
    Am J Pathol; 2001 Mar; 158(3):1079-90. PubMed ID: 11238056
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Alterations of beta-adrenergic signaling and cardiac hypertrophy in transgenic mice overexpressing TGF-beta(1).
    Rosenkranz S; Flesch M; Amann K; Haeuseler C; Kilter H; Seeland U; Schlüter KD; Böhm M
    Am J Physiol Heart Circ Physiol; 2002 Sep; 283(3):H1253-62. PubMed ID: 12181157
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Defining "culprit mechanisms" in arrhythmogenic cardiac remodeling.
    Nattel S
    Circ Res; 2004 Jun; 94(11):1403-5. PubMed ID: 15192034
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.