These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1169 related articles for article (PubMed ID: 16151022)
1. NADPH oxidase-derived superoxide anion mediates angiotensin II-induced pressor effect via activation of p38 mitogen-activated protein kinase in the rostral ventrolateral medulla. Chan SH; Hsu KS; Huang CC; Wang LL; Ou CC; Chan JY Circ Res; 2005 Oct; 97(8):772-80. PubMed ID: 16151022 [TBL] [Abstract][Full Text] [Related]
2. Upregulation of AT1 receptor gene on activation of protein kinase Cbeta/nicotinamide adenine dinucleotide diphosphate oxidase/ERK1/2/c-fos signaling cascade mediates long-term pressor effect of angiotensin II in rostral ventrolateral medulla. Chan SH; Wang LL; Tseng HL; Chan JY J Hypertens; 2007 Sep; 25(9):1845-61. PubMed ID: 17762649 [TBL] [Abstract][Full Text] [Related]
3. Superoxide mediates sympathoexcitation in heart failure: roles of angiotensin II and NAD(P)H oxidase. Gao L; Wang W; Li YL; Schultz HD; Liu D; Cornish KG; Zucker IH Circ Res; 2004 Oct; 95(9):937-44. PubMed ID: 15459075 [TBL] [Abstract][Full Text] [Related]
4. Opposing roles of p47phox in basal versus angiotensin II-stimulated alterations in vascular O2- production, vascular tone, and mitogen-activated protein kinase activation. Li JM; Wheatcroft S; Fan LM; Kearney MT; Shah AM Circulation; 2004 Mar; 109(10):1307-13. PubMed ID: 14993144 [TBL] [Abstract][Full Text] [Related]
5. Transcriptional upregulation of mitochondrial uncoupling protein 2 protects against oxidative stress-associated neurogenic hypertension. Chan SH; Wu CA; Wu KL; Ho YH; Chang AY; Chan JY Circ Res; 2009 Oct; 105(9):886-96. PubMed ID: 19762685 [TBL] [Abstract][Full Text] [Related]
6. Effects of p38 MAPK Inhibitor on angiotensin II-dependent hypertension, organ damage, and superoxide anion production. Bao W; Behm DJ; Nerurkar SS; Ao Z; Bentley R; Mirabile RC; Johns DG; Woods TN; Doe CP; Coatney RW; Ohlstein JF; Douglas SA; Willette RN; Yue TL J Cardiovasc Pharmacol; 2007 Jun; 49(6):362-8. PubMed ID: 17577100 [TBL] [Abstract][Full Text] [Related]
7. Neuronal angiotensin II type 1 receptor upregulation in heart failure: activation of activator protein 1 and Jun N-terminal kinase. Liu D; Gao L; Roy SK; Cornish KG; Zucker IH Circ Res; 2006 Oct; 99(9):1004-11. PubMed ID: 17008603 [TBL] [Abstract][Full Text] [Related]
8. The effect of angiotensin II on mitogen-activated protein kinase in human cardiomyocytes. Wei C; Cardarelli MG; Downing SW; McLaughlin JS J Renin Angiotensin Aldosterone Syst; 2000 Dec; 1(4):379-84. PubMed ID: 11967827 [TBL] [Abstract][Full Text] [Related]
9. The rostral ventrolateral medulla mediates sympathetic baroreflex responses to intraventricular angiotensin II in rabbits. Saigusa T; Granger NS; Godwin SJ; Head GA Auton Neurosci; 2003 Aug; 107(1):20-31. PubMed ID: 12927223 [TBL] [Abstract][Full Text] [Related]
10. Angiotensin II type 1 receptor-activated caspase-3 through ras/mitogen-activated protein kinase/extracellular signal-regulated kinase in the rostral ventrolateral medulla is involved in sympathoexcitation in stroke-prone spontaneously hypertensive rats. Kishi T; Hirooka Y; Konno S; Ogawa K; Sunagawa K Hypertension; 2010 Feb; 55(2):291-7. PubMed ID: 20065158 [TBL] [Abstract][Full Text] [Related]
11. Redox-dependent MAP kinase signaling by Ang II in vascular smooth muscle cells: role of receptor tyrosine kinase transactivation. Touyz RM; Cruzado M; Tabet F; Yao G; Salomon S; Schiffrin EL Can J Physiol Pharmacol; 2003 Feb; 81(2):159-67. PubMed ID: 12710530 [TBL] [Abstract][Full Text] [Related]
12. Superoxide anions modulate the effects of angiotensin-(1-7) in the rostral ventrolateral medulla on cardiac sympathetic afferent reflex and sympathetic activity in rats. Li P; Zhang F; Zhou YB; Cui BP; Han Y Neuroscience; 2012 Oct; 223():388-98. PubMed ID: 22863676 [TBL] [Abstract][Full Text] [Related]
13. Superoxide anion mediates angiotensin II-induced potentiation of contractile response to sympathetic stimulation. Lu C; Su LY; Lee RM; Gao YJ Eur J Pharmacol; 2008 Jul; 589(1-3):188-93. PubMed ID: 18538762 [TBL] [Abstract][Full Text] [Related]
14. NADPH oxidase-dependent formation of reactive oxygen species contributes to angiotensin II-induced epithelial-mesenchymal transition in rat peritoneal mesothelial cells. Chang J; Jiang Z; Zhang H; Zhu H; Zhou SF; Yu X Int J Mol Med; 2011 Sep; 28(3):405-12. PubMed ID: 21537828 [TBL] [Abstract][Full Text] [Related]
17. Angiotensin II activates connective tissue growth factor and induces extracellular matrix changes involving Smad/activation and p38 mitogen-activated protein kinase signalling pathways in human dermal fibroblasts. Zhang GY; Li X; Yi CG; Pan H; He GD; Yu Q; Jiang LF; Xu WH; Li ZJ; Ding J; Lin DS; Gao WY Exp Dermatol; 2009 Nov; 18(11):947-53. PubMed ID: 19397700 [TBL] [Abstract][Full Text] [Related]
18. Chronic angiotensin II infusion modulates angiotensin II type I receptor expression in the subfornical organ and the rostral ventrolateral medulla in hypertensive rats. Nunes FC; Braga VA J Renin Angiotensin Aldosterone Syst; 2011 Dec; 12(4):440-5. PubMed ID: 21393361 [TBL] [Abstract][Full Text] [Related]
19. AMP-activated protein kinase inhibits angiotensin II-stimulated vascular smooth muscle cell proliferation. Nagata D; Takeda R; Sata M; Satonaka H; Suzuki E; Nagano T; Hirata Y Circulation; 2004 Jul; 110(4):444-51. PubMed ID: 15262850 [TBL] [Abstract][Full Text] [Related]
20. Upregulation of AT Jiang L; Zhou X; Yang H; Guan R; Xin Y; Wang J; Shen L; Zhu D; Ma S; Wang J Front Physiol; 2018; 9():1860. PubMed ID: 30670978 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]