These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 16151124)

  • 1. Evidence for aceticlastic methanogenesis in the presence of sulfate in a gas condensate-contaminated aquifer.
    Struchtemeyer CG; Elshahed MS; Duncan KE; McInerney MJ
    Appl Environ Microbiol; 2005 Sep; 71(9):5348-53. PubMed ID: 16151124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activity and diversity of methanogens in a petroleum hydrocarbon-contaminated aquifer.
    Kleikemper J; Pombo SA; Schroth MH; Sigler WV; Pesaro M; Zeyer J
    Appl Environ Microbiol; 2005 Jan; 71(1):149-58. PubMed ID: 15640182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of Methanosaetaceae.
    Karakashev D; Batstone DJ; Trably E; Angelidaki I
    Appl Environ Microbiol; 2006 Jul; 72(7):5138-41. PubMed ID: 16820524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vertical distribution of structure and function of the methanogenic archaeal community in Lake Dagow sediment.
    Chan OC; Claus P; Casper P; Ulrich A; Lueders T; Conrad R
    Environ Microbiol; 2005 Aug; 7(8):1139-49. PubMed ID: 16011751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biostimulation of petroleum-hydrocarbon-contaminated marine sediment with co-substrate: involved metabolic process and microbial community.
    Zhang Z; Lo IM
    Appl Microbiol Biotechnol; 2015 Jul; 99(13):5683-96. PubMed ID: 25661814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark).
    Parkes RJ; Cragg BA; Banning N; Brock F; Webster G; Fry JC; Hornibrook E; Pancost RD; Kelly S; Knab N; Jørgensen BB; Rinna J; Weightman AJ
    Environ Microbiol; 2007 May; 9(5):1146-61. PubMed ID: 17472631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaerobic oxidation of methane at different temperature regimes in Guaymas Basin hydrothermal sediments.
    Biddle JF; Cardman Z; Mendlovitz H; Albert DB; Lloyd KG; Boetius A; Teske A
    ISME J; 2012 May; 6(5):1018-31. PubMed ID: 22094346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An anaerobic methane-oxidizing community of ANME-1b archaea in hypersaline Gulf of Mexico sediments.
    Lloyd KG; Lapham L; Teske A
    Appl Environ Microbiol; 2006 Nov; 72(11):7218-30. PubMed ID: 16980428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aceticlastic and NaCl-requiring methanogen "Methanosaeta pelagica" sp. nov., isolated from marine tidal flat sediment.
    Mori K; Iino T; Suzuki K; Yamaguchi K; Kamagata Y
    Appl Environ Microbiol; 2012 May; 78(9):3416-23. PubMed ID: 22344667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial-Temporal Pattern of Sulfate-Dependent Anaerobic Methane Oxidation in an Intertidal Zone of the East China Sea.
    Wang J; Hua M; Cai C; Hu J; Wang J; Yang H; Ma F; Qian H; Zheng P; Hu B
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30709818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradation of an alicyclic hydrocarbon by a sulfate-reducing enrichment from a gas condensate-contaminated aquifer.
    Rios-Hernandez LA; Gieg LM; Suflita JM
    Appl Environ Microbiol; 2003 Jan; 69(1):434-43. PubMed ID: 12514025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source.
    Timmers PH; Suarez-Zuluaga DA; van Rossem M; Diender M; Stams AJ; Plugge CM
    ISME J; 2016 Jun; 10(6):1400-12. PubMed ID: 26636551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of C1-metabolizing prokaryotic communities in methane seep habitats at the Kuroshima Knoll, southern Ryukyu Arc, by analyzing pmoA, mmoX, mxaF, mcrA, and 16S rRNA genes.
    Inagaki F; Tsunogai U; Suzuki M; Kosaka A; Machiyama H; Takai K; Nunoura T; Nealson KH; Horikoshi K
    Appl Environ Microbiol; 2004 Dec; 70(12):7445-55. PubMed ID: 15574947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influences of pond geochemistry, temperature, and freeze-thaw on terminal anaerobic processes occurring in sediments of six ponds of the McMurdo Ice Shelf, near Bratina Island, Antarctica.
    Mountfort DO; Kaspar HF; Asher RA; Sutherland D
    Appl Environ Microbiol; 2003 Jan; 69(1):583-92. PubMed ID: 12514045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the methanogen population structure and activity in a brackish lake sediment.
    Banning N; Brock F; Fry JC; Parkes RJ; Hornibrook ER; Weightman AJ
    Environ Microbiol; 2005 Jul; 7(7):947-60. PubMed ID: 15946291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversity of prokaryotes and methanogenesis in deep subsurface sediments from the Nankai Trough, Ocean Drilling Program Leg 190.
    Newberry CJ; Webster G; Cragg BA; Parkes RJ; Weightman AJ; Fry JC
    Environ Microbiol; 2004 Mar; 6(3):274-87. PubMed ID: 14871211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbiological and geochemical heterogeneity in an in situ uranium bioremediation field site.
    Vrionis HA; Anderson RT; Ortiz-Bernad I; O'Neill KR; Resch CT; Peacock AD; Dayvault R; White DC; Long PE; Lovley DR
    Appl Environ Microbiol; 2005 Oct; 71(10):6308-18. PubMed ID: 16204552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the sulfate-reducing bacterial and methanogenic archaeal populations in contrasting Antarctic sediments.
    Purdy KJ; Nedwell DB; Embley TM
    Appl Environ Microbiol; 2003 Jun; 69(6):3181-91. PubMed ID: 12788715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno).
    Schubert CJ; Vazquez F; Lösekann-Behrens T; Knittel K; Tonolla M; Boetius A
    FEMS Microbiol Ecol; 2011 Apr; 76(1):26-38. PubMed ID: 21244447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acetoclastic methanogenesis is likely the dominant biochemical pathway of palmitate degradation in the presence of sulfate.
    Lv L; Mbadinga SM; Wang LY; Liu JF; Gu JD; Mu BZ; Yang SZ
    Appl Microbiol Biotechnol; 2015 Sep; 99(18):7757-69. PubMed ID: 25985849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.