These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 16151175)
1. Activity-dependent expression of occ1 in excitatory neurons is a characteristic feature of the primate visual cortex. Takahata T; Komatsu Y; Watakabe A; Hashikawa T; Tochitani S; Yamamori T Cereb Cortex; 2006 Jul; 16(7):929-40. PubMed ID: 16151175 [TBL] [Abstract][Full Text] [Related]
2. Difference in sensory dependence of occ1/Follistatin-related protein expression between macaques and mice. Takahata T; Hashikawa T; Higo N; Tochitani S; Yamamori T J Chem Neuroanat; 2008 Jan; 35(1):146-57. PubMed ID: 17950574 [TBL] [Abstract][Full Text] [Related]
3. Differential expression patterns of OCC1-related, extracellular matrix proteins in the lateral geniculate nucleus of macaque monkeys. Takahata T; Hashikawa T; Tochitani S; Yamamori T J Chem Neuroanat; 2010 Oct; 40(2):112-22. PubMed ID: 20457249 [TBL] [Abstract][Full Text] [Related]
4. The occ1 gene is preferentially expressed in the primary visual cortex in an activity-dependent manner: a pattern of gene expression related to the cytoarchitectonic area in adult macaque neocortex. Tochitani S; Liang F; Watakabe A; Hashikawa T; Yamamori T Eur J Neurosci; 2001 Jan; 13(2):297-307. PubMed ID: 11168534 [TBL] [Abstract][Full Text] [Related]
5. Differential expression of muscarinic acetylcholine receptors across excitatory and inhibitory cells in visual cortical areas V1 and V2 of the macaque monkey. Disney AA; Domakonda KV; Aoki C J Comp Neurol; 2006 Nov; 499(1):49-63. PubMed ID: 16958109 [TBL] [Abstract][Full Text] [Related]
6. Retinol-binding protein gene is highly expressed in higher-order association areas of the primate neocortex. Komatsu Y; Watakabe A; Hashikawa T; Tochitani S; Yamamori T Cereb Cortex; 2005 Jan; 15(1):96-108. PubMed ID: 15217901 [TBL] [Abstract][Full Text] [Related]
7. Binding and complementary expression patterns of semaphorin 3E and plexin D1 in the mature neocortices of mice and monkeys. Watakabe A; Ohsawa S; Hashikawa T; Yamamori T J Comp Neurol; 2006 Nov; 499(2):258-73. PubMed ID: 16977617 [TBL] [Abstract][Full Text] [Related]
8. Relationship between contrast adaptation and orientation tuning in V1 and V2 of cat visual cortex. Crowder NA; Price NS; Hietanen MA; Dreher B; Clifford CW; Ibbotson MR J Neurophysiol; 2006 Jan; 95(1):271-83. PubMed ID: 16192327 [TBL] [Abstract][Full Text] [Related]
14. Expression of occ1 mRNA in the visual cortex during postnatal development in macaques. Tochitani S; Hashikawa T; Yamamori T Neurosci Lett; 2003 Feb; 337(2):114-6. PubMed ID: 12527401 [TBL] [Abstract][Full Text] [Related]
16. Selective visual responses to expansion and rotation in the human MT complex revealed by functional magnetic resonance imaging adaptation. Wall MB; Lingnau A; Ashida H; Smith AT Eur J Neurosci; 2008 May; 27(10):2747-57. PubMed ID: 18547254 [TBL] [Abstract][Full Text] [Related]
17. Gene expression changes and molecular pathways mediating activity-dependent plasticity in visual cortex. Tropea D; Kreiman G; Lyckman A; Mukherjee S; Yu H; Horng S; Sur M Nat Neurosci; 2006 May; 9(5):660-8. PubMed ID: 16633343 [TBL] [Abstract][Full Text] [Related]
18. Asymmetric synaptic depression in cortical networks. Chelaru MI; Dragoi V Cereb Cortex; 2008 Apr; 18(4):771-88. PubMed ID: 17693394 [TBL] [Abstract][Full Text] [Related]
19. Functional and molecular development of striatal fast-spiking GABAergic interneurons and their cortical inputs. Plotkin JL; Wu N; Chesselet MF; Levine MS Eur J Neurosci; 2005 Sep; 22(5):1097-108. PubMed ID: 16176351 [TBL] [Abstract][Full Text] [Related]
20. Orientation tuning of surround suppression in lateral geniculate nucleus and primary visual cortex of cat. Naito T; Sadakane O; Okamoto M; Sato H Neuroscience; 2007 Nov; 149(4):962-75. PubMed ID: 17945429 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]