These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1097 related articles for article (PubMed ID: 16151231)

  • 1. Microbial response to heavy metal-polluted soils: community analysis from phospholipid-linked fatty acids and ester-linked fatty acids extracts.
    Hinojosa MB; Carreira JA; García-Ruíz R; Dick RP
    J Environ Qual; 2005; 34(5):1789-800. PubMed ID: 16151231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter.
    Wang Y; Shi J; Wang H; Lin Q; Chen X; Chen Y
    Ecotoxicol Environ Saf; 2007 May; 67(1):75-81. PubMed ID: 16828162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of copper on phospholipid fatty acid composition of microbial communities in two red soils.
    Yao HY; Liu YY; Xue D; Huang CY
    J Environ Sci (China); 2006; 18(3):503-9. PubMed ID: 17294647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of heavy metals on substrate utilization pattern, biomass, and activity of microbial communities in a reclaimed mining wasteland of red soil area.
    Liao M; Xie XM
    Ecotoxicol Environ Saf; 2007 Feb; 66(2):217-23. PubMed ID: 16488009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils.
    Turpeinen R; Kairesalo T; Häggblom MM
    FEMS Microbiol Ecol; 2004 Jan; 47(1):39-50. PubMed ID: 19712345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A soil alteration index based on phospholipid fatty acids.
    Puglisi E; Nicelli M; Capri E; Trevisan M; Del Re AA
    Chemosphere; 2005 Dec; 61(11):1548-57. PubMed ID: 15990146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of heavy metals on soil microbial activity and diversity in a reclaimed mining wasteland of red soil area.
    Liao M; Chen CL; Huang CY
    J Environ Sci (China); 2005; 17(5):832-7. PubMed ID: 16313013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial indicators of heavy metal contamination in urban and rural soils.
    Yang Y; Campbell CD; Clark L; Cameron CM; Paterson E
    Chemosphere; 2006 Jun; 63(11):1942-52. PubMed ID: 16310826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decomposition of heavy metal contaminated nettles (Urtica dioica L.) in soils subjected to heavy metal pollution by river sediments.
    Khan KS; Joergensen RG
    Chemosphere; 2006 Nov; 65(6):981-7. PubMed ID: 16677685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term effects of the Aznalcóllar mine spill-heavy metal content and mobility in soils and sediments of the Guadiamar river valley (SW Spain).
    Kraus U; Wiegand J
    Sci Total Environ; 2006 Aug; 367(2-3):855-71. PubMed ID: 16500695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial community dynamics during composting of sewage sludge and straw studied through phospholipid and neutral lipid analysis.
    Amir S; Merlina G; Pinelli E; Winterton P; Revel JC; Hafidi M
    J Hazard Mater; 2008 Nov; 159(2-3):593-601. PubMed ID: 18394794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of imazethapyr on the microbial community structure in agricultural soils.
    Zhang C; Xu J; Liu X; Dong F; Kong Z; Sheng Y; Zheng Y
    Chemosphere; 2010 Oct; 81(6):800-6. PubMed ID: 20659755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhizospheric effects on the microbial community of e-waste-contaminated soils using phospholipid fatty acid and isoprenoid glycerol dialkyl glycerol tetraether analyses.
    Song M; Cheng Z; Luo C; Jiang L; Zhang D; Yin H; Zhang G
    Environ Sci Pollut Res Int; 2018 Apr; 25(10):9904-9914. PubMed ID: 29374376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pressurized liquid extraction of soil microbial phospholipid and neutral lipid fatty acids.
    White PM; Potter TL; Strickland TC
    J Agric Food Chem; 2009 Aug; 57(16):7171-7. PubMed ID: 19624130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial ecological response of the intestinal flora of Peromyscus maniculatus and P. leucopus to heavy metal contamination.
    Coolon JD; Jones KL; Narayanan S; Wisely SM
    Mol Ecol; 2010 Mar; 19 Suppl 1():67-80. PubMed ID: 20331771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational improvements reveal great bacterial diversity and high metal toxicity in soil.
    Gans J; Wolinsky M; Dunbar J
    Science; 2005 Aug; 309(5739):1387-90. PubMed ID: 16123304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal availability in heavy metal-contaminated open burning and open detonation soil: assessment using soil enzymes, earthworms, and chemical extractions.
    Lee SH; Kim EY; Hyun S; Kim JG
    J Hazard Mater; 2009 Oct; 170(1):382-8. PubMed ID: 19540045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of lead acetate on soil microbial biomass and community structure in two different soils with the growth of Chinese cabbage (Brassica chinensis).
    Liao M; Chen CL; Zeng LS; Huang CY
    Chemosphere; 2007 Jan; 66(7):1197-205. PubMed ID: 16949632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of triclosan on microbial community structure in three soils.
    Butler E; Whelan MJ; Ritz K; Sakrabani R; van Egmond R
    Chemosphere; 2012 Sep; 89(1):1-9. PubMed ID: 22551872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of pig slurry application to heavy metal polluted soils monitoring nitrification processes.
    de la Fuente C; Clemente R; Martinez J; Pilar Bernal M
    Chemosphere; 2010 Oct; 81(5):603-10. PubMed ID: 20825965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 55.