BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 16151704)

  • 21. A biophysical model of passive and polarized active transport processes in Caco-2 cells: approaches to uncoupling apical and basolateral membrane events in the intact cell.
    Ho NF; Burton PS; Conradi RA; Barsuhn CL
    J Pharm Sci; 1995 Jan; 84(1):21-7. PubMed ID: 7714738
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [The in vitro kinetics of uptake, transport and efflux of 9-nitrocamptothecin in Caco-2 cell model].
    Sha XY; Fang XL; Wu YJ
    Yao Xue Xue Bao; 2004 Oct; 39(10):839-43. PubMed ID: 15700828
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interaction of GABA-mimetics with the taurine transporter (TauT, Slc6a6) in hyperosmotic treated Caco-2, LLC-PK1 and rat renal SKPT cells.
    Rasmussen RN; Lagunas C; Plum J; Holm R; Nielsen CU
    Eur J Pharm Sci; 2016 Jan; 82():138-46. PubMed ID: 26631583
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New insights into the carrier-mediated transport of estrone-3-sulfate in the Caco-2 cell model.
    Grandvuinet AS; Gustavsson L; Steffansen B
    Mol Pharm; 2013 Sep; 10(9):3285-95. PubMed ID: 23834246
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of the transport of uracil across Caco-2 and LLC-PK1 cell monolayers.
    Li H; Chung SJ; Shim CK
    Pharm Res; 2002 Oct; 19(10):1495-501. PubMed ID: 12425467
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanisms underlying saturable intestinal absorption of metformin.
    Proctor WR; Bourdet DL; Thakker DR
    Drug Metab Dispos; 2008 Aug; 36(8):1650-8. PubMed ID: 18458049
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Osmoregulatory alterations in taurine uptake by cultured human and bovine lens epithelial cells.
    Cammarata PR; Schafer G; Chen SW; Guo Z; Reeves RE
    Invest Ophthalmol Vis Sci; 2002 Feb; 43(2):425-33. PubMed ID: 11818387
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Polarized nature of taurine transport in LLC-PK1 and MDCK cells: Further characterization of divergent transport models.
    Jones DP; Chesney RW
    Amino Acids; 1993 Oct; 5(3):329-39. PubMed ID: 24190704
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transepithelial transport of diphenhydramine across monolayers of the human intestinal epithelial cell line Caco-2.
    Mizuuchi H; Katsura T; Hashimoto Y; Inui K
    Pharm Res; 2000 May; 17(5):539-45. PubMed ID: 10888305
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dipeptide transporters in apical and basolateral membranes of the human intestinal cell line Caco-2.
    Saito H; Inui K
    Am J Physiol; 1993 Aug; 265(2 Pt 1):G289-94. PubMed ID: 8396335
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional characterization and cloning of amino acid transporter B(0,+) (ATB(0,+)) in primary cultured rat pneumocytes.
    Uchiyama T; Fujita T; Gukasyan HJ; Kim KJ; Borok Z; Crandall ED; Lee VH
    J Cell Physiol; 2008 Mar; 214(3):645-54. PubMed ID: 17960566
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Properties of taurine transport in a human retinal pigment epithelial cell line.
    Leibach JW; Cool DR; Del Monte MA; Ganapathy V; Leibach FH; Miyamoto Y
    Curr Eye Res; 1993 Jan; 12(1):29-36. PubMed ID: 8436008
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transport of phenylethylamine at intestinal epithelial (Caco-2) cells: mechanism and substrate specificity.
    Fischer W; Neubert RH; Brandsch M
    Eur J Pharm Biopharm; 2010 Feb; 74(2):281-9. PubMed ID: 19962438
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolism, uptake, and transepithelial transport of the diastereomers of Val-Val in the human intestinal cell line, Caco-2.
    Tamura K; Bhatnagar PK; Takata JS; Lee CP; Smith PL; Borchardt RT
    Pharm Res; 1996 Aug; 13(8):1213-8. PubMed ID: 8865315
    [TBL] [Abstract][Full Text] [Related]  

  • 35. H(+)-coupled dipeptide (glycylsarcosine) transport across apical and basal borders of human intestinal Caco-2 cell monolayers display distinctive characteristics.
    Thwaites DT; Brown CD; Hirst BH; Simmons NL
    Biochim Biophys Acta; 1993 Sep; 1151(2):237-45. PubMed ID: 8373798
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Imidazole-4-acetic acid, a new lead structure for interaction with the taurine transporter in outer blood-retinal barrier cells.
    Valembois S; Krall J; Frølund B; Steffansen B
    Eur J Pharm Sci; 2017 May; 103():77-84. PubMed ID: 28259832
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of pH on L- and D-methionine uptake across the apical membrane of Caco-2 cells.
    Martín-Venegas R; Rodríguez-Lagunas MJ; Mercier Y; Geraert PA; Ferrer R
    Am J Physiol Cell Physiol; 2009 Mar; 296(3):C632-8. PubMed ID: 19144861
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tumor necrosis factor alpha stimulates taurine uptake and transporter gene expression in human intestinal Caco-2 cells.
    Mochizuki T; Satsu H; Shimizu M
    FEBS Lett; 2002 Apr; 517(1-3):92-6. PubMed ID: 12062416
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phosphate depletion in opossum kidney cells: apical but not basolateral or transepithelial adaptions of Pi transport.
    Barac-Nieto M; Alfred M; Spitzer A
    Exp Nephrol; 2001; 9(4):258-64. PubMed ID: 11423725
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcellular transport of oral cephalosporins in human intestinal epithelial cells, Caco-2: interaction with dipeptide transport systems in apical and basolateral membranes.
    Matsumoto S; Saito H; Inui K
    J Pharmacol Exp Ther; 1994 Aug; 270(2):498-504. PubMed ID: 8071843
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.