These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 16151872)
1. The super-excess energy dissipation in diatom algae: comparative analysis with higher plants. Ruban A; Lavaud J; Rousseau B; Guglielmi G; Horton P; Etienne AL Photosynth Res; 2004; 82(2):165-75. PubMed ID: 16151872 [TBL] [Abstract][Full Text] [Related]
2. The fine-tuning of NPQ in diatoms relies on the regulation of both xanthophyll cycle enzymes. Blommaert L; Chafai L; Bailleul B Sci Rep; 2021 Jun; 11(1):12750. PubMed ID: 34140542 [TBL] [Abstract][Full Text] [Related]
3. The regulation of xanthophyll cycle activity and of non-photochemical fluorescence quenching by two alternative electron flows in the diatoms Phaeodactylum tricornutum and Cyclotella meneghiniana. Grouneva I; Jakob T; Wilhelm C; Goss R Biochim Biophys Acta; 2009 Jul; 1787(7):929-38. PubMed ID: 19232316 [TBL] [Abstract][Full Text] [Related]
4. Detachment of the fucoxanthin chlorophyll a/c binding protein (FCP) antenna is not involved in the acclimative regulation of photoprotection in the pennate diatom Phaeodactylum tricornutum. Giovagnetti V; Ruban AV Biochim Biophys Acta Bioenerg; 2017 Mar; 1858(3):218-230. PubMed ID: 27989819 [TBL] [Abstract][Full Text] [Related]
5. The importance of a highly active and DeltapH-regulated diatoxanthin epoxidase for the regulation of the PS II antenna function in diadinoxanthin cycle containing algae. Goss R; Ann Pinto E; Wilhelm C; Richter M J Plant Physiol; 2006 Oct; 163(10):1008-21. PubMed ID: 16971213 [TBL] [Abstract][Full Text] [Related]
6. In diatoms, a transthylakoid proton gradient alone is not sufficient to induce a non-photochemical fluorescence quenching. Lavaud J; Rousseau B; Etienne AL FEBS Lett; 2002 Jul; 523(1-3):163-6. PubMed ID: 12123825 [TBL] [Abstract][Full Text] [Related]
7. The Dynamics of Energy Dissipation and Xanthophyll Conversion in Arabidopsis Indicate an Indirect Photoprotective Role of Zeaxanthin in Slowly Inducible and Relaxing Components of Non-photochemical Quenching of Excitation Energy. Kress E; Jahns P Front Plant Sci; 2017; 8():2094. PubMed ID: 29276525 [TBL] [Abstract][Full Text] [Related]
8. The diatom Phaeodactylum tricornutum adjusts nonphotochemical fluorescence quenching capacity in response to dynamic light via fine-tuned Lhcx and xanthophyll cycle pigment synthesis. Lepetit B; Gélin G; Lepetit M; Sturm S; Vugrinec S; Rogato A; Kroth PG; Falciatore A; Lavaud J New Phytol; 2017 Apr; 214(1):205-218. PubMed ID: 27870063 [TBL] [Abstract][Full Text] [Related]
9. A new multicomponent NPQ mechanism in the diatom Cyclotella meneghiniana. Grouneva I; Jakob T; Wilhelm C; Goss R Plant Cell Physiol; 2008 Aug; 49(8):1217-25. PubMed ID: 18587148 [TBL] [Abstract][Full Text] [Related]
10. Arabidopsis plants lacking PsbS protein possess photoprotective energy dissipation. Johnson MP; Ruban AV Plant J; 2010 Jan; 61(2):283-9. PubMed ID: 19843315 [TBL] [Abstract][Full Text] [Related]
11. Diversity in Xanthophyll Cycle Pigments Content and Related Nonphotochemical Quenching (NPQ) Among Microalgae: Implications for Growth Strategy and Ecology. Lacour T; Babin M; Lavaud J J Phycol; 2020 Apr; 56(2):245-263. PubMed ID: 31674660 [TBL] [Abstract][Full Text] [Related]
12. Ultrafast fluorescence study on the location and mechanism of non-photochemical quenching in diatoms. Miloslavina Y; Grouneva I; Lambrev PH; Lepetit B; Goss R; Wilhelm C; Holzwarth AR Biochim Biophys Acta; 2009 Oct; 1787(10):1189-97. PubMed ID: 19486881 [TBL] [Abstract][Full Text] [Related]
13. Energy dissipation pathways in Photosystem 2 of the diatom, Phaeodactylum tricornutum, under high-light conditions. Kuzminov FI; Gorbunov MY Photosynth Res; 2016 Feb; 127(2):219-35. PubMed ID: 26220363 [TBL] [Abstract][Full Text] [Related]
14. Photochemical and Nonphotochemical Fluorescence Quenching Processes in the Diatom Phaeodactylum tricornutum. Ting CS; Owens TG Plant Physiol; 1993 Apr; 101(4):1323-1330. PubMed ID: 12231788 [TBL] [Abstract][Full Text] [Related]
15. Analysis of ΔpH and the xanthophyll cycle in NPQ of the Antarctic sea ice alga Chlamydomonas sp. ICE-L. Mou S; Zhang X; Ye N; Miao J; Cao S; Xu D; Fan X; An M Extremophiles; 2013 May; 17(3):477-84. PubMed ID: 23494479 [TBL] [Abstract][Full Text] [Related]
16. An Arabidopsis thaliana mutant, altered in the γ-subunit of ATP synthase, has a different pattern of intensity-dependent changes in non-photochemical quenching and kinetics of the P-to-S fluorescence decay. Spilotro P Funct Plant Biol; 2002 Apr; 29(4):425-434. PubMed ID: 32689487 [TBL] [Abstract][Full Text] [Related]
17. Silencing of the violaxanthin de-epoxidase gene in the diatom Phaeodactylum tricornutum reduces diatoxanthin synthesis and non-photochemical quenching. Lavaud J; Materna AC; Sturm S; Vugrinec S; Kroth PG PLoS One; 2012; 7(5):e36806. PubMed ID: 22629333 [TBL] [Abstract][Full Text] [Related]
18. The peculiar NPQ regulation in the stramenopile Phaeomonas sp. challenges the xanthophyll cycle dogma. Berne N; Fabryova T; Istaz B; Cardol P; Bailleul B Biochim Biophys Acta Bioenerg; 2018 Jul; 1859(7):491-500. PubMed ID: 29625087 [TBL] [Abstract][Full Text] [Related]
19. Non-photochemical quenching and xanthophyll cycle activities in six green algal species suggest mechanistic differences in the process of excess energy dissipation. Quaas T; Berteotti S; Ballottari M; Flieger K; Bassi R; Wilhelm C; Goss R J Plant Physiol; 2015 Jan; 172():92-103. PubMed ID: 25240793 [TBL] [Abstract][Full Text] [Related]
20. Changes in the photosynthetic reaction centre II in the diatom Phaeodactylum tricornutum result in non-photochemical fluorescence quenching. Eisenstadt D; Ohad I; Keren N; Kaplan A Environ Microbiol; 2008 Aug; 10(8):1997-2007. PubMed ID: 18397307 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]