These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 16152)

  • 1. Physicochemical properties of a liquid ion exchanger microelectrode and its application to biological fluids.
    Fujimoto M; Kubota T
    Jpn J Physiol; 1976; 26(6):631-50. PubMed ID: 16152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The measurement of intracellular sodium activities in the bullfrog by means of double-barreled sodium liquid ion-exchanger microelectrodes.
    Kotera K; Satake N; Honda M; Fujimoto M
    Membr Biochem; 1979; 2(3-4):323-38. PubMed ID: 42004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A triple-barreled microelectrode for simultaneous measurements of intracellular Na+ and K+ activities and membrane potential in biological cells.
    Fujimoto M; Honda M
    Jpn J Physiol; 1980; 30(6):859-75. PubMed ID: 6973655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel combinational pH-PCO2 microelectrode.
    Rao X; Ma Y
    Anal Biochem; 1993 Jul; 212(1):43-6. PubMed ID: 8368514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new double-barrelled, ionophore-based microelectrode for chloride ions.
    Kondo Y; Bührer T; Seiler K; Frömter E; Simon W
    Pflugers Arch; 1989 Sep; 414(6):663-8. PubMed ID: 2813044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bias current modifies the selectivity of liquid membrane ion-selective microelectrodes.
    Coles JA
    Pflugers Arch; 1988 Mar; 411(3):339-44. PubMed ID: 3380648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular potassium activity in mammalian proximal tubule: effect of perturbations in transepithelial sodium transport.
    Laprade R; Lapointe JY; Breton S; Duplain M; Cardinal J
    J Membr Biol; 1991 May; 121(3):249-59. PubMed ID: 1865489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. General properties of antimony microelectrode in comparison with glass microelectrode for pH measurement.
    Fujimoto M; Matsumura Y; Satake N
    Jpn J Physiol; 1980; 30(4):491-508. PubMed ID: 6970289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous direct measurement of intracellular chloride and pH in frog skeletal muscle.
    Bolton TB; Vaughan-Jones RD
    J Physiol; 1977 Sep; 270(3):801-33. PubMed ID: 20501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion-selective microelectrodes: theory and technique.
    Armstrong WM; Garcia-Diaz JF
    Fed Proc; 1980 Sep; 39(11):2851-9. PubMed ID: 7409206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature coefficient of and oxygen effect on the antimony microelectrode.
    Satake N; Matsumura Y; Fujimoto M
    Jpn J Physiol; 1980; 30(5):671-87. PubMed ID: 6970292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A carbon dioxide air-gap microelectrode based on a neutral hydrogen ion exchanger pH microelectrode.
    Ma YL
    Anal Biochem; 1990 Apr; 186(1):74-7. PubMed ID: 2113365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chloride and potassium activities in luminal fluid of turtle thyroid follicles as determined by selective ion-exchanger microelectrodes.
    Chow SY; Kunze D; Brown AM; Woodbury DM
    Proc Natl Acad Sci U S A; 1970 Oct; 67(2):998-1004. PubMed ID: 5289037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The studies of potassium and chloride ion transport mechanisms across the biological membrane using the liquid ion exchanger microelectrodes (author's transl)].
    Miki S
    Nihon Jinzo Gakkai Shi; 1979 Jan; 21(1):67-79. PubMed ID: 449118
    [No Abstract]   [Full Text] [Related]  

  • 15. Physicochemical characteristics of antimony microelectrode with special reference to selection of standard buffers.
    Matsumura Y; Satake N; Fujimoto M
    Jpn J Physiol; 1980; 30(4):509-28. PubMed ID: 6970290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of membrane transport processes in renal cells, by means of liquid ion exchanger microelectrodes.
    Anagnostopoulos T
    J Physiol (Paris); 1984; 79(6):401-5. PubMed ID: 6100308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potassium-specific ion-exchanger microelectrodes to measure K + activity in the renal distal tubule.
    Writht FS; McDougal WS
    Yale J Biol Med; 1972; 45(3-4):373-83. PubMed ID: 4638660
    [No Abstract]   [Full Text] [Related]  

  • 18. A new microelectrode method for simultaneous measurement of pH and PCO2.
    Bomsztyk K; Calalb MB
    Am J Physiol; 1986 Nov; 251(5 Pt 2):F933-7. PubMed ID: 3096152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An improved liquid ion exchanger for chloride ion-selective microelectrodes.
    Baumgarten CM
    Am J Physiol; 1981 Nov; 241(5):C258-63. PubMed ID: 7304736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double-barreled and Concentric Microelectrodes for Measurement of Extracellular Ion Signals in Brain Tissue.
    Haack N; Durry S; Kafitz KW; Chesler M; Rose R
    J Vis Exp; 2015 Sep; (103):. PubMed ID: 26381747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.