These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 16152668)

  • 1. Single cell manipulation, analytics, and label-free protein detection in microfluidic devices for systems nanobiology.
    Hellmich W; Pelargus C; Leffhalm K; Ros A; Anselmetti D
    Electrophoresis; 2005 Oct; 26(19):3689-96. PubMed ID: 16152668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved native UV laser induced fluorescence detection for single cell analysis in poly(dimethylsiloxane) microfluidic devices.
    Hellmich W; Greif D; Pelargus C; Anselmetti D; Ros A
    J Chromatogr A; 2006 Oct; 1130(2):195-200. PubMed ID: 16814305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single cell analysis in full body quartz glass chips with native UV laser-induced fluorescence detection.
    Greif D; Galla L; Ros A; Anselmetti D
    J Chromatogr A; 2008 Oct; 1206(1):83-8. PubMed ID: 18657818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioanalysis in structured microfluidic systems.
    Ros A; Hellmich W; Regtmeier J; Duong TT; Anselmetti D
    Electrophoresis; 2006 Jul; 27(13):2651-8. PubMed ID: 16817165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards single molecule analysis in PDMS microdevices: from the detection of ultra low dye concentrations to single DNA molecule studies.
    Ros A; Hellmich W; Duong T; Anselmetti D
    J Biotechnol; 2004 Aug; 112(1-2):65-72. PubMed ID: 15288941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The potential of autofluorescence for the detection of single living cells for label-free cell sorting in microfluidic systems.
    Emmelkamp J; Wolbers F; Andersson H; Dacosta RS; Wilson BC; Vermes I; van den Berg A
    Electrophoresis; 2004 Nov; 25(21-22):3740-5. PubMed ID: 15565697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The proteomic reactor: a microfluidic device for processing minute amounts of protein prior to mass spectrometry analysis.
    Ethier M; Hou W; Duewel HS; Figeys D
    J Proteome Res; 2006 Oct; 5(10):2754-9. PubMed ID: 17022646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic chips for mass spectrometry-based proteomics.
    Lee J; Soper SA; Murray KK
    J Mass Spectrom; 2009 May; 44(5):579-93. PubMed ID: 19373851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The combination of optical tweezers and microwell array for cells physical manipulation and localization in microfluidic device.
    Luo C; Li H; Xiong C; Peng X; Kou Q; Chen Y; Ji H; Ouyang Q
    Biomed Microdevices; 2007 Aug; 9(4):573-8. PubMed ID: 17484053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurements of label free protein concentration and conformational changes using a microfluidic UV-LED method.
    Lee J; Tripathi A
    Biotechnol Prog; 2007; 23(6):1506-12. PubMed ID: 17994758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence optical detection in situ for real-time monitoring of cytochrome P450 enzymatic activity of liver cells in multiple microfluidic devices.
    Sung JH; Choi JR; Kim D; Shuler ML
    Biotechnol Bioeng; 2009 Oct; 104(3):516-25. PubMed ID: 19575443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A first step towards practical single cell proteomics: a microfluidic antibody capture chip with TIRF detection.
    Salehi-Reyhani A; Kaplinsky J; Burgin E; Novakova M; deMello AJ; Templer RH; Parker P; Neil MA; Ces O; French P; Willison KR; Klug D
    Lab Chip; 2011 Apr; 11(7):1256-61. PubMed ID: 21347466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput and high-resolution flow cytometry in molded microfluidic devices.
    Simonnet C; Groisman A
    Anal Chem; 2006 Aug; 78(16):5653-63. PubMed ID: 16906708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pretreatment-free fast ultraviolet detection of melamine in milk products with a disposable microfluidic device.
    Zhai C; Qiang W; Sheng J; Lei J; Ju H
    J Chromatogr A; 2010 Jan; 1217(5):785-9. PubMed ID: 20022603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic devices for the analysis of single cells: leaving no protein uncounted.
    Navratil M; Whiting CE; Arriaga EA
    Sci STKE; 2007 May; 2007(388):pe29. PubMed ID: 17536099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic devices for the high-throughput chemical analysis of cells.
    McClain MA; Culbertson CT; Jacobson SC; Allbritton NL; Sims CE; Ramsey JM
    Anal Chem; 2003 Nov; 75(21):5646-55. PubMed ID: 14588001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrokinetic concentration enrichment within a microfluidic device using a hydrogel microplug.
    Dhopeshwarkar R; Sun L; Crooks RM
    Lab Chip; 2005 Oct; 5(10):1148-54. PubMed ID: 16175272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Counting low-copy number proteins in a single cell.
    Huang B; Wu H; Bhaya D; Grossman A; Granier S; Kobilka BK; Zare RN
    Science; 2007 Jan; 315(5808):81-4. PubMed ID: 17204646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monolithic media in microfluidic devices for proteomics.
    Ro KW; Nayak R; Knapp DR
    Electrophoresis; 2006 Sep; 27(18):3547-58. PubMed ID: 16927347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A label-free protein microfluidic array for parallel immunoassays.
    Wang ZH; Meng YH; Ying PQ; Qi C; Jin G
    Electrophoresis; 2006 Oct; 27(20):4078-85. PubMed ID: 17054092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.