BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 16153086)

  • 1. Synthesis, material properties, and biocompatibility of a novel self-cross-linkable poly(caprolactone fumarate) as an injectable tissue engineering scaffold.
    Jabbari E; Wang S; Lu L; Gruetzmacher JA; Ameenuddin S; Hefferan TE; Currier BL; Windebank AJ; Yaszemski MJ
    Biomacromolecules; 2005; 6(5):2503-11. PubMed ID: 16153086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and characterizations of biodegradable and crosslinkable poly(epsilon-caprolactone fumarate), poly(ethylene glycol fumarate), and their amphiphilic copolymer.
    Wang S; Lu L; Gruetzmacher JA; Currier BL; Yaszemski MJ
    Biomaterials; 2006 Feb; 27(6):832-41. PubMed ID: 16102819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroxyapatite scaffolds infiltrated with thermally crosslinked polycaprolactone fumarate and polycaprolactone itaconate.
    Sharifi S; Shafieyan Y; Mirzadeh H; Bagheri-Khoulenjani S; Rabiee SM; Imani M; Atai M; Shokrgozar MA; Hatampoor A
    J Biomed Mater Res A; 2011 Aug; 98(2):257-67. PubMed ID: 21626657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of biodegradable networks by photo-crosslinking lactide, epsilon-caprolactone and trimethylene carbonate-based oligomers functionalized with fumaric acid monoethyl ester.
    Grijpma DW; Hou Q; Feijen J
    Biomaterials; 2005 Jun; 26(16):2795-802. PubMed ID: 15603775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and characterization of novel injectable, biodegradable and in situ crosslinkable poly(hexamethylene-carbonate-fumarate), poly(hexamethylene carbonate) diacrylate and poly(ethylene glycol fumarate-co-hexamethylene carbonate-fumarate) scaffolds for bone tissue engineering.
    Sharifi S; Mirzadeh H; Imani M; Atai M; Bakhshi R; Ziaee F
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():791-4. PubMed ID: 17945601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and characterization of a photo-cross-linked bioactive polycaprolactone-based osteoconductive biocomposite.
    Razazpour F; Najafi F; Moshaverinia A; Fatemi SM; Sima S
    J Biomed Mater Res A; 2021 Oct; 109(10):1858-1868. PubMed ID: 33830598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extrusion 3D-printing and characterization of poly(caprolactone fumarate) for bone regeneration applications.
    Gaihre B; Potes MDA; Liu X; Tilton M; Camilleri E; Rezaei A; Serdiuk V; Park S; Lucien F; Terzic A; Lu L
    J Biomed Mater Res A; 2024 May; 112(5):672-684. PubMed ID: 37971074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of bioresorbable in situ crosslinkable ultra low molecular weight poly(lactide) macromer.
    Jabbari E; He X
    J Mater Sci Mater Med; 2008 Jan; 19(1):311-8. PubMed ID: 17597374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol) as candidate biomaterials: characterization and mechanical property study.
    Li X; Loh XJ; Wang K; He C; Li J
    Biomacromolecules; 2005; 6(5):2740-7. PubMed ID: 16153114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porous crosslinked poly(ε-caprolactone fumarate)/nanohydroxyapatite composites for bone tissue engineering.
    Farokhi M; Sharifi S; Shafieyan Y; Bagher Z; Mottaghitalab F; Hatampoor A; Imani M; Shokrgozar MA
    J Biomed Mater Res A; 2012 Apr; 100(4):1051-60. PubMed ID: 22323426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct cell responses to substrates consisting of poly(ε-caprolactone) and poly(propylene fumarate) in the presence or absence of cross-links.
    Wang K; Cai L; Hao F; Xu X; Cui M; Wang S
    Biomacromolecules; 2010 Oct; 11(10):2748-59. PubMed ID: 20822174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photo-crosslinked poly(epsilon-caprolactone fumarate) networks for guided peripheral nerve regeneration: material properties and preliminary biological evaluations.
    Wang S; Yaszemski MJ; Knight AM; Gruetzmacher JA; Windebank AJ; Lu L
    Acta Biomater; 2009 Jun; 5(5):1531-42. PubMed ID: 19171506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, characterization, and degradation behavior of amphiphilic poly-alpha,beta-[N-(2-hydroxyethyl)-L-aspartamide]-g-poly(epsilon-caprolactone).
    Miao ZM; Cheng SX; Zhang XZ; Zhuo RX
    Biomacromolecules; 2005; 6(6):3449-57. PubMed ID: 16283778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering.
    Lee SH; Kim BS; Kim SH; Choi SW; Jeong SI; Kwon IK; Kang SW; Nikolovski J; Mooney DJ; Han YK; Kim YH
    J Biomed Mater Res A; 2003 Jul; 66(1):29-37. PubMed ID: 12833428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocompatibility and biodegradation of polyester and polyfumarate based-scaffolds for bone tissue engineering.
    Cortizo MS; Molinuevo MS; Cortizo AM
    J Tissue Eng Regen Med; 2008 Jan; 2(1):33-42. PubMed ID: 18273918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of poly(epsilon-caprolactone)/polyfumarate blends as scaffolds for bone tissue engineering.
    Fernandez JM; Molinuevo MS; Cortizo AM; McCarthy AD; Cortizo MS
    J Biomater Sci Polym Ed; 2010; 21(10):1297-312. PubMed ID: 20534186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel injectable poly(epsilon-caprolactone)/calcium sulfate system for bone regeneration: synthesis and characterization.
    La Gatta A; De Rosa A; Laurienzo P; Malinconico M; De Rosa M; Schiraldi C
    Macromol Biosci; 2005 Nov; 5(11):1108-17. PubMed ID: 16245268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradable radiopaque iodinated poly(ester urethane)s containing poly(ε-caprolactone) blocks: synthesis, characterization, and biocompatibility.
    Sang L; Wei Z; Liu K; Wang X; Song K; Wang H; Qi M
    J Biomed Mater Res A; 2014 Apr; 102(4):1121-30. PubMed ID: 23640806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and characterization of biodegradable poly (ethylene glycol) and poly (caprolactone diol) end capped poly (propylene fumarate) cross linked amphiphilic hydrogel as tissue engineering scaffold material.
    Krishna L; Jayabalan M
    J Mater Sci Mater Med; 2009 Dec; 20 Suppl 1():S115-22. PubMed ID: 18584124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, characterization, and biocompatibility of novel injectable, biodegradable, and in situ crosslinkable polycarbonate-based macromers.
    Sharifi S; Imani M; Mirzadeh H; Atai M; Ziaee F; Bakhshi R
    J Biomed Mater Res A; 2009 Sep; 90(3):830-43. PubMed ID: 18615464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.