These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 16153086)

  • 41. Development of an osteoconductive PCL-PDIPF-hydroxyapatite composite scaffold for bone tissue engineering.
    Fernandez JM; Molinuevo MS; Cortizo MS; Cortizo AM
    J Tissue Eng Regen Med; 2011 Jun; 5(6):e126-35. PubMed ID: 21312338
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Application of an elastic biodegradable poly(L-lactide-co-epsilon-caprolactone) scaffold for cartilage tissue regeneration.
    Jung Y; Kim SH; You HJ; Kim SH; Kim YH; Min BG
    J Biomater Sci Polym Ed; 2008; 19(8):1073-85. PubMed ID: 18644232
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In vivo bone biocompatibility and degradation of porous fumarate-based polymer/alumoxane nanocomposites for bone tissue engineering.
    Mistry AS; Pham QP; Schouten C; Yeh T; Christenson EM; Mikos AG; Jansen JA
    J Biomed Mater Res A; 2010 Feb; 92(2):451-62. PubMed ID: 19191316
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 3. Proliferation and differentiation of encapsulated marrow stromal osteoblasts cultured on crosslinking poly(propylene fumarate).
    Payne RG; McGonigle JS; Yaszemski MJ; Yasko AW; Mikos AG
    Biomaterials; 2002 Nov; 23(22):4381-7. PubMed ID: 12219828
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Magnesium oxide nanoparticle-loaded polycaprolactone composite electrospun fiber scaffolds for bone-soft tissue engineering applications: in-vitro and in-vivo evaluation.
    Suryavanshi A; Khanna K; Sindhu KR; Bellare J; Srivastava R
    Biomed Mater; 2017 Sep; 12(5):055011. PubMed ID: 28944766
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tough biodegradable mixed-macromer networks and hydrogels by photo-crosslinking in solution.
    Zant E; Grijpma DW
    Acta Biomater; 2016 Feb; 31():80-88. PubMed ID: 26687979
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Photoinitiated cross-linking of the biodegradable polyester poly(propylene fumarate). Part II. In vitro degradation.
    Fisher JP; Holland TA; Dean D; Mikos AG
    Biomacromolecules; 2003; 4(5):1335-42. PubMed ID: 12959603
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(epsilon-caprolactone) blends for tissue engineering applications in the form of hollow fibers.
    Chiono V; Ciardelli G; Vozzi G; Sotgiu MG; Vinci B; Domenici C; Giusti P
    J Biomed Mater Res A; 2008 Jun; 85(4):938-53. PubMed ID: 17896770
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthesis and characterization of injectable, thermosensitive, and biocompatible acellular bone matrix/poly(ethylene glycol)-poly (ε-caprolactone)-poly(ethylene glycol) hydrogel composite.
    Ni PY; Fan M; Qian ZY; Luo JC; Gong CY; Fu SZ; Shi S; Luo F; Yang ZM
    J Biomed Mater Res A; 2012 Jan; 100(1):171-9. PubMed ID: 22009709
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Porous scaffolds from high molecular weight polyesters synthesized via enzyme-catalyzed ring-opening polymerization.
    Srivastava RK; Albertsson AC
    Biomacromolecules; 2006 Sep; 7(9):2531-8. PubMed ID: 16961314
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In vitro degradation of porous poly(propylene fumarate)/poly(DL-lactic-co-glycolic acid) composite scaffolds.
    Hedberg EL; Shih CK; Lemoine JJ; Timmer MD; Liebschner MA; Jansen JA; Mikos AG
    Biomaterials; 2005 Jun; 26(16):3215-25. PubMed ID: 15603816
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Physical characterization of blends of poly(D-lactide) and LHRH (a leuprolide decapeptide analog).
    Fraschini C; Jalabert M; Prud'homme RE
    Biomacromolecules; 2005; 6(6):3112-8. PubMed ID: 16283735
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fabrication, characterization, and biocompatibility assessment of a novel elastomeric nanofibrous scaffold: A potential scaffold for soft tissue engineering.
    Shamirzaei Jeshvaghani E; Ghasemi-Mobarakeh L; Mansurnezhad R; Ajalloueian F; Kharaziha M; Dinari M; Sami Jokandan M; Chronakis IS
    J Biomed Mater Res B Appl Biomater; 2018 Aug; 106(6):2371-2383. PubMed ID: 29168916
    [TBL] [Abstract][Full Text] [Related]  

  • 54. New facile approach to novel water-soluble aliphatic poly(butylene tartarate)s bearing reactive hydroxyl pendant groups.
    Hao Q; Yang J; Li Q; Li Y; Jia L; Fang Q; Cao A
    Biomacromolecules; 2005; 6(6):3474-80. PubMed ID: 16283781
    [No Abstract]   [Full Text] [Related]  

  • 55. Synthesis, characterizations and biocompatibility of novel biodegradable star block copolymers based on poly[(R)-3-hydroxybutyrate] and poly(epsilon-caprolactone).
    Wu L; Wang L; Wang X; Xu K
    Acta Biomater; 2010 Mar; 6(3):1079-89. PubMed ID: 19671452
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of porosity and pore size on microstructures and mechanical properties of poly-epsilon-caprolactone- hydroxyapatite composites.
    Yu H; Matthew HW; Wooley PH; Yang SY
    J Biomed Mater Res B Appl Biomater; 2008 Aug; 86(2):541-7. PubMed ID: 18335434
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Porous poly(ε-caprolactone) scaffolds for load-bearing tissue regeneration: solventless fabrication and characterization.
    Allaf RM; Rivero IV; Abidi N; Ivanov IN
    J Biomed Mater Res B Appl Biomater; 2013 Aug; 101(6):1050-60. PubMed ID: 23559444
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Physicochemical characterisation of novel ultra-thin biodegradable scaffolds for peripheral nerve repair.
    Sun M; Downes S
    J Mater Sci Mater Med; 2009 May; 20(5):1181-92. PubMed ID: 19132511
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Composite PLA scaffolds reinforced with PDO fibers for tissue engineering.
    Cont L; Grant D; Scotchford C; Todea M; Popa C
    J Biomater Appl; 2013 Feb; 27(6):707-16. PubMed ID: 22071352
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Injectable in situ cross-linkable nanocomposites of biodegradable polymers and carbon nanostructures for bone tissue engineering.
    Sitharaman B; Shi X; Tran LA; Spicer PP; Rusakova I; Wilson LJ; Mikos AG
    J Biomater Sci Polym Ed; 2007; 18(6):655-71. PubMed ID: 17623549
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.