BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 16153608)

  • 1. Leucine suppresses myofibrillar proteolysis by down-regulating ubiquitin-proteasome pathway in chick skeletal muscles.
    Nakashima K; Ishida A; Yamazaki M; Abe H
    Biochem Biophys Res Commun; 2005 Oct; 336(2):660-6. PubMed ID: 16153608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of myofibrillar proteolysis in chick skeletal muscles by alpha-ketoisocaproate.
    Nakashima K; Yakabe Y; Ishida A; Yamazaki M; Abe H
    Amino Acids; 2007 Sep; 33(3):499-503. PubMed ID: 16998714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of protein degradation in skeletal muscle by a phorbol ester involves upregulation of the ubiquitin-proteasome proteolytic pathway.
    Wyke SM; Tisdale MJ
    Life Sci; 2006 May; 78(25):2898-910. PubMed ID: 16343552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteasome activity is altered in skeletal muscle tissue of tumour-bearing rats a leucine-rich diet.
    Ventrucci G; Mello MA; Gomes-Marcondes MC
    Endocr Relat Cancer; 2004 Dec; 11(4):887-95. PubMed ID: 15613461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of ubiquitin-proteasome pathway in skeletal muscle wasting in rats with endotoxemia.
    Chai J; Wu Y; Sheng ZZ
    Crit Care Med; 2003 Jun; 31(6):1802-7. PubMed ID: 12794423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of exercise on canine skeletal muscle proteolysis: an investigation of the ubiquitin-proteasome pathway and other metabolic markers.
    Wakshlag JJ; Kallfelz FA; Barr SC; Ordway G; Haley NJ; Flaherty CE; Kelley RL; Altom EK; Lepine AJ; Davenport GM
    Vet Ther; 2002; 3(3):215-25. PubMed ID: 12447828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of ubiquitin-proteasome-dependent proteolysis in the remodelling of skeletal muscle.
    Taillandier D; Combaret L; Pouch MN; Samuels SE; Béchet D; Attaix D
    Proc Nutr Soc; 2004 May; 63(2):357-61. PubMed ID: 15294055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Branched-chain amino acids: a role in skeletal muscle proteolysis in catabolic states?
    Busquets S; Alvarez B; López-Soriano FJ; Argilés JM
    J Cell Physiol; 2002 Jun; 191(3):283-9. PubMed ID: 12012323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amino acids and insulin act additively to regulate components of the ubiquitin-proteasome pathway in C2C12 myotubes.
    Sadiq F; Hazlerigg DG; Lomax MA
    BMC Mol Biol; 2007 Mar; 8():23. PubMed ID: 17371596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemotherapy inhibits skeletal muscle ubiquitin-proteasome-dependent proteolysis.
    Tilignac T; Temparis S; Combaret L; Taillandier D; Pouch MN; Cervek M; Cardenas DM; Le Bricon T; Debiton E; Samuels SE; Madelmont JC; Attaix D
    Cancer Res; 2002 May; 62(10):2771-7. PubMed ID: 12019153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose infusion suppresses surgery-induced muscle protein breakdown by inhibiting ubiquitin-proteasome pathway in rats.
    Mikura M; Yamaoka I; Doi M; Kawano Y; Nakayama M; Nakao R; Hirasaka K; Okumura Y; Nikawa T
    Anesthesiology; 2009 Jan; 110(1):81-8. PubMed ID: 19104174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effects of insulin on proteolysis of cultured rabbit skeletal muscular myotubes in vitro].
    Shen CA; Chai JK; Sheng ZY; Yang HM; Yin HM; Feng R
    Zhonghua Shao Shang Za Zhi; 2006 Aug; 22(4):262-5. PubMed ID: 17175640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of orally administered glycine on myofibrillar proteolysis and expression of proteolytic-related genes of skeletal muscle in chicks.
    Nakashima K; Yakabe Y; Ishida A; Katsumata M
    Amino Acids; 2008 Aug; 35(2):451-6. PubMed ID: 17624491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clenbuterol induces muscle-specific attenuation of atrophy through effects on the ubiquitin-proteasome pathway.
    Yimlamai T; Dodd SL; Borst SE; Park S
    J Appl Physiol (1985); 2005 Jul; 99(1):71-80. PubMed ID: 15774696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ubiquitin-proteasome-dependent proteolysis in rainbow trout (Oncorhynchus mykiss): effect of food deprivation.
    Martin SA; Blaney S; Bowman AS; Houlihan DF
    Pflugers Arch; 2002 Nov; 445(2):257-66. PubMed ID: 12457246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular signals activating muscle proteolysis in chronic kidney disease: a two-stage process.
    Du J; Hu Z; Mitch WE
    Int J Biochem Cell Biol; 2005 Oct; 37(10):2147-55. PubMed ID: 15982920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leucine induces myofibrillar protein accretion in cultured skeletal muscle through mTOR dependent and -independent control of myosin heavy chain mRNA levels.
    Haegens A; Schols AM; van Essen AL; van Loon LJ; Langen RC
    Mol Nutr Food Res; 2012 May; 56(5):741-52. PubMed ID: 22648621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triiodothyronine but not thyroxine accelerates myofibrillar proteolysis via ATP production in cultured muscle cells.
    Doi J; Ohtsubo A; Ohtsuka A; Hayashi K
    Biosci Biotechnol Biochem; 2003 Nov; 67(11):2451-4. PubMed ID: 14646207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of serum deprivation on myofibrillar proteolysis in chick myotube cultures.
    Nakashima K; Nonaka I; Masaki S
    Biosci Biotechnol Biochem; 2003 Nov; 67(11):2455-8. PubMed ID: 14646208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of attenuation of angiotensin-II-induced protein degradation by insulin-like growth factor-I (IGF-I).
    Russell ST; Eley H; Tisdale MJ
    Cell Signal; 2007 Jul; 19(7):1583-95. PubMed ID: 17376652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.