BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 16153617)

  • 1. Effects of Kv1.1 channel glycosylation on C-type inactivation and simulated action potentials.
    Sutachan JJ; Watanabe I; Zhu J; Gottschalk A; Recio-Pinto E; Thornhill WB
    Brain Res; 2005 Oct; 1058(1-2):30-43. PubMed ID: 16153617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The glycosylation state of Kv1.2 potassium channels affects trafficking, gating, and simulated action potentials.
    Watanabe I; Zhu J; Sutachan JJ; Gottschalk A; Recio-Pinto E; Thornhill WB
    Brain Res; 2007 May; 1144():1-18. PubMed ID: 17324383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycosylation affects rat Kv1.1 potassium channel gating by a combined surface potential and cooperative subunit interaction mechanism.
    Watanabe I; Wang HG; Sutachan JJ; Zhu J; Recio-Pinto E; Thornhill WB
    J Physiol; 2003 Jul; 550(Pt 1):51-66. PubMed ID: 12879861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NH2-terminal inactivation peptide binding to C-type-inactivated Kv channels.
    Kurata HT; Wang Z; Fedida D
    J Gen Physiol; 2004 May; 123(5):505-20. PubMed ID: 15078918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the endogenous IK currents in rat hippocampal neurons and cloned Kv2.1 channels in CHO cells.
    Liu M; Gong B; Qi Z
    Cell Biol Int; 2008 Dec; 32(12):1514-20. PubMed ID: 18801450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kv1.1 channels of dorsal root ganglion neurons are inhibited by n-butyl-p-aminobenzoate, a promising anesthetic for the treatment of chronic pain.
    Beekwilder JP; O'Leary ME; van den Broek LP; van Kempen GT; Ypey DL; van den Berg RJ
    J Pharmacol Exp Ther; 2003 Feb; 304(2):531-8. PubMed ID: 12538804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HMJ-53A accelerates slow inactivation gating of voltage-gated K+ channels in mouse neuroblastoma N2A cells.
    Chao CC; Shieh J; Kuo SC; Wu BT; Hour MJ; Leung YM
    Neuropharmacology; 2008 Jun; 54(7):1128-35. PubMed ID: 18406431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constitutive inactivation of the hKv1.5 mutant channel, H463G, in K+-free solutions at physiological pH.
    Zhang S; Eduljee C; Kwan DC; Kehl SJ; Fedida D
    Cell Biochem Biophys; 2005; 43(2):221-30. PubMed ID: 16049347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional consequences of Kv1.3 ion channel rearrangement into the immunological synapse.
    Tóth A; Szilágyi O; Krasznai Z; Panyi G; Hajdú P
    Immunol Lett; 2009 Jun; 125(1):15-21. PubMed ID: 19477198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Open channel block of A-type, kv4.3, and delayed rectifier K+ channels, Kv1.3 and Kv3.1, by sibutramine.
    Kim SE; Ahn HS; Choi BH; Jang HJ; Kim MJ; Rhie DJ; Yoon SH; Jo YH; Kim MS; Sung KW; Hahn SJ
    J Pharmacol Exp Ther; 2007 May; 321(2):753-62. PubMed ID: 17312186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kv1 potassium channel C-terminus constant HRETE region: arginine substitution affects surface protein level and conductance level of subfamily members differentially.
    Zhu J; Gomez B; Watanabe I; Thornhill WB
    Mol Membr Biol; 2007; 24(3):194-205. PubMed ID: 17520476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Action potential changes associated with a slowed inactivation of cardiac voltage-gated sodium channels by KB130015.
    Macianskiene R; Bito V; Raeymaekers L; Brandts B; Sipido KR; Mubagwa K
    Br J Pharmacol; 2003 Aug; 139(8):1469-79. PubMed ID: 12922934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cholesterol modifies the gating of Kv1.3 in human T lymphocytes.
    Hajdú P; Varga Z; Pieri C; Panyi G; Gáspár R
    Pflugers Arch; 2003 Mar; 445(6):674-82. PubMed ID: 12632187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induction of pseudo-periodic oscillation in voltage-gated sodium channel properties is dependent on the duration of prolonged depolarization.
    Majumdar S; Foster G; Sikdar SK
    Eur J Neurosci; 2004 Jul; 20(1):127-43. PubMed ID: 15245486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arachidonic acid potently inhibits both postsynaptic-type Kv4.2 and presynaptic-type Kv1.4 IA potassium channels.
    Angelova PR; Müller WS
    Eur J Neurosci; 2009 May; 29(10):1943-50. PubMed ID: 19453640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quercetin activates human Kv1.5 channels by a residue I502 in the S6 segment.
    Yang L; Ma JH; Zhang PH; Zou AR; Tu DN
    Clin Exp Pharmacol Physiol; 2009 Feb; 36(2):154-61. PubMed ID: 18986330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of amino acids in the pore region of Kv1.2 potassium channel that regulate its glycosylation and cell surface expression.
    Utsunomiya I; Tanabe S; Terashi T; Ikeno S; Miyatake T; Hoshi K; Taguchi K
    J Neurochem; 2010 Feb; 112(4):913-23. PubMed ID: 19968754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The binding of kappa-Conotoxin PVIIA and fast C-type inactivation of Shaker K+ channels are mutually exclusive.
    Koch ED; Olivera BM; Terlau H; Conti F
    Biophys J; 2004 Jan; 86(1 Pt 1):191-209. PubMed ID: 14695262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N type rapid inactivation in human Kv1.4 channels: functional role of a putative C-terminal helix.
    Sankaranarayanan K; Varshney A; Mathew MK
    Mol Membr Biol; 2005; 22(5):389-400. PubMed ID: 16308273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cumulative inactivation and the pore domain in the Kv1 channels.
    Shimizu Y; Kubo T; Furukawa Y
    Pflugers Arch; 2002 Mar; 443(5-6):720-30. PubMed ID: 11889569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.