These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

536 related articles for article (PubMed ID: 16153712)

  • 21. The Middlesex University rehabilitation robot.
    Parsons B; White A; Prior S; Warner P
    J Med Eng Technol; 2005; 29(4):151-62. PubMed ID: 16012066
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new haptic interface for VR medical training.
    Riener R; Burgkart R
    Stud Health Technol Inform; 2002; 85():388-94. PubMed ID: 15458120
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Force field apparatus for investigating movement control in small animals.
    Francis JT; Chapin JK
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):963-5. PubMed ID: 15188864
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development and testing of a tactile feedback system for robotic surgery.
    Grundfest WS; Culjat MO; King CH; Franco ML; Wottawa C; Lewis CE; Bisley JW; Dutson EP
    Stud Health Technol Inform; 2009; 142():103-8. PubMed ID: 19377124
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neural ensemble activity from multiple brain regions predicts kinematic and dynamic variables in a multiple force field reaching task.
    Francis JT; Chapin JK
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):172-4. PubMed ID: 16792286
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Robotic assisted rehabilitation in Virtual Reality with the L-EXOS.
    Frisoli A; Bergamasco M; Carboncini MC; Rossi B
    Stud Health Technol Inform; 2009; 145():40-54. PubMed ID: 19592785
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of a force-reflecting robotic platform for cardiac catheter navigation.
    Park JW; Choi J; Pak HN; Song SJ; Lee JC; Park Y; Shin SM; Sun K
    Artif Organs; 2010 Nov; 34(11):1034-9. PubMed ID: 21092046
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Applications of tactile feedback in medicine.
    Wottawa C; Fan R; Bisley JW; Dutson EP; Culjat MO; Grundfest WS
    Stud Health Technol Inform; 2011; 163():703-9. PubMed ID: 21335884
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Standing-up robot: an assistive rehabilitative device for training and assessment.
    Kamnik R; Bajd T
    J Med Eng Technol; 2004; 28(2):74-80. PubMed ID: 14965861
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robot-assisted adaptive training: custom force fields for teaching movement patterns.
    Patton JL; Mussa-Ivaldi FA
    IEEE Trans Biomed Eng; 2004 Apr; 51(4):636-46. PubMed ID: 15072218
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of robotically controlled advanced endoscopic instruments.
    Reilink R; Kappers AM; Stramigioli S; Misra S
    Int J Med Robot; 2013 Jun; 9(2):240-6. PubMed ID: 23609979
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The impact of haptic feedback quality on the performance of teleoperated assembly tasks.
    Wildenbeest JG; Abbink DA; Heemskerk CJ; van der Helm FC; Boessenkool H
    IEEE Trans Haptics; 2013; 6(2):242-52. PubMed ID: 24808307
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Braccio di Ferro: a new haptic workstation for neuromotor rehabilitation.
    Casadio M; Sanguineti V; Morasso PG; Arrichiello V
    Technol Health Care; 2006; 14(3):123-42. PubMed ID: 16971753
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electromyographic correlates of learning during robotic surgical training in virtual reality.
    Suh IH; Mukherjee M; Schrack R; Park SH; Chien JH; Oleynikov D; Siu KC
    Stud Health Technol Inform; 2011; 163():630-4. PubMed ID: 21335869
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of a robotic device for facilitating learning by children who have severe disabilities.
    Cook AM; Meng MQ; Gu JJ; Howery K
    IEEE Trans Neural Syst Rehabil Eng; 2002 Sep; 10(3):178-87. PubMed ID: 12503783
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinematic analysis of motor performance in robot-assisted surgery: a preliminary study.
    Nisky I; Patil S; Hsieh MH; Okamura AM
    Stud Health Technol Inform; 2013; 184():302-8. PubMed ID: 23400175
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predictive haptic guidance: intelligent user assistance for the control of dynamic tasks.
    Forsyth BA; MacLean KE
    IEEE Trans Vis Comput Graph; 2006; 12(1):103-13. PubMed ID: 16382612
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bio-inspired grasp control in a robotic hand with massive sensorial input.
    Ascari L; Bertocchi U; Corradi P; Laschi C; Dario P
    Biol Cybern; 2009 Feb; 100(2):109-28. PubMed ID: 19066937
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of reaching kinematics during mirror and parallel robot assisted movements.
    Kadivar Z; Sung C; Thompson Z; O'Malley M; Liebschner M; Deng Z
    Stud Health Technol Inform; 2011; 163():247-53. PubMed ID: 21335798
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimizing compliant, model-based robotic assistance to promote neurorehabilitation.
    Wolbrecht ET; Chan V; Reinkensmeyer DJ; Bobrow JE
    IEEE Trans Neural Syst Rehabil Eng; 2008 Jun; 16(3):286-97. PubMed ID: 18586608
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.