These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 16153717)

  • 41. Similar effect of cueing conditions on attentional and saccadic temporal dynamics.
    Filali-Sadouk N; Castet E; Olivier E; Zenon A
    J Vis; 2010 Apr; 10(4):21.1-13. PubMed ID: 20465340
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of the calcarine cortex (V1) in perception of visual cues for saccades.
    Lalli S; Hussain Z; Ayub A; Cracco RQ; Bodis-Wollner I; Amassian VE
    Clin Neurophysiol; 2006 Sep; 117(9):2030-8. PubMed ID: 16884952
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Automatic selective attention as a function of sensory modality in aging.
    Guerreiro MJ; Adam JJ; Van Gerven PW
    J Gerontol B Psychol Sci Soc Sci; 2012 Mar; 67(2):194-202. PubMed ID: 21798856
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of spatial distribution of attention during inhibition of return (IOR) on flanker interference in hearing and congenitally deaf people.
    Chen Q; Zhang M; Zhou X
    Brain Res; 2006 Sep; 1109(1):117-27. PubMed ID: 16859649
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spatial and feature-based effects of exogenous cueing on visual motion processing.
    Busse L; Katzner S; Treue S
    Vision Res; 2006 Jun; 46(13):2019-27. PubMed ID: 16476463
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Developmental changes in inhibition of return from 3 to 6 months of age.
    Varga K; Frick JE; Kapa LL; Dengler MJ
    Infant Behav Dev; 2010 Apr; 33(2):245-9. PubMed ID: 20117841
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modulations of the visual N1 component of event-related potentials by central and peripheral cueing.
    Doallo S; Lorenzo-López L; Vizoso C; Holguín SR; Amenedo E; Bará S; Cadaveira F
    Clin Neurophysiol; 2005 Apr; 116(4):807-20. PubMed ID: 15792890
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inhibition of return: a "depth-blind" mechanism?
    Casagrande M; Barbato M; Mereu S; Martella D; Marotta A; Theeuwes J; Collinson SL
    Acta Psychol (Amst); 2012 May; 140(1):75-80. PubMed ID: 22465912
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Deficit of endogenous spatial orienting of attention in children with benign epilepsy with centrotemporal spikes (BECTS).
    Deltour L; Querné L; Vernier-Hauvette MP; Berquin P
    Epilepsy Res; 2008 May; 79(2-3):112-9. PubMed ID: 18329247
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of age on inhibition of return is independent of non-ocular response inhibition.
    Poliakoff E; Coward RS; Lowe C; O'Boyle DJ
    Neuropsychologia; 2007 Jan; 45(2):387-96. PubMed ID: 16884743
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The neural correlates of attention orienting in visuospatial working memory for detecting feature and conjunction changes.
    Yeh YY; Kuo BC; Liu HL
    Brain Res; 2007 Jan; 1130(1):146-57. PubMed ID: 17173876
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reliance on advance information and movement sequencing in Huntington's disease.
    Georgiou N; Bradshaw JL; Phillips JG; Chiu E; Bradshaw JA
    Mov Disord; 1995 Jul; 10(4):472-81. PubMed ID: 7565829
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Early Huntington's disease affects movements in transformed sensorimotor mappings.
    Boulet C; Lemay M; Bédard MA; Chouinard MJ; Chouinard S; Richer F
    Brain Cogn; 2005 Apr; 57(3):236-43. PubMed ID: 15780456
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A unified bayesian observer analysis for set size and cueing effects on perceptual decisions and saccades.
    Shimozaki SS; Schoonveld WA; Eckstein MP
    J Vis; 2012 Jun; 12(6):. PubMed ID: 22728676
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interlateral asymmetry in the time course of the effect of a peripheral prime stimulus.
    Castro-Barros BA; Righi LL; Grechi G; Ribeiro-do-Valle LE
    Brain Cogn; 2008 Apr; 66(3):265-79. PubMed ID: 17961895
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Correlates of capture of attention and inhibition of return across stages of visual processing.
    Fecteau JH; Munoz DP
    J Cogn Neurosci; 2005 Nov; 17(11):1714-27. PubMed ID: 16269108
    [TBL] [Abstract][Full Text] [Related]  

  • 57. When a high-intensity "distractor" is better then a low-intensity one: modeling the effect of an auditory or tactile nontarget stimulus on visual saccadic reaction time.
    Diederich A; Colonius H
    Brain Res; 2008 Nov; 1242():219-30. PubMed ID: 18573240
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Visual attention and perception in patients with Huntington's disease: comparisons with other subcortical and cortical dementias.
    Filoteo JV; Delis DC; Roman MJ; Demadura T; Ford E; Butters N; Salmon DP; Paulsen J; Shults CW; Swenson M
    J Clin Exp Neuropsychol; 1995 Oct; 17(5):654-67. PubMed ID: 8557807
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cue repetition increases inhibition of return.
    Dukewich KR; Boehnke SE
    Neurosci Lett; 2008 Dec; 448(3):231-5. PubMed ID: 18973792
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Target processing is facilitated by motivationally relevant cues.
    Briggs KE; Martin FH
    Biol Psychol; 2008 Apr; 78(1):29-42. PubMed ID: 18262710
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.