BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 16154171)

  • 1. Role of double-stranded RNA and Npro of classical swine fever virus in the activation of monocyte-derived dendritic cells.
    Bauhofer O; Summerfield A; McCullough KC; Ruggli N
    Virology; 2005 Dec; 343(1):93-105. PubMed ID: 16154171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N(pro) of classical swine fever virus is an antagonist of double-stranded RNA-mediated apoptosis and IFN-alpha/beta induction.
    Ruggli N; Bird BH; Liu L; Bauhofer O; Tratschin JD; Hofmann MA
    Virology; 2005 Sep; 340(2):265-76. PubMed ID: 16043207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycosylation of classical swine fever virus E(rns) is essential for binding double-stranded RNA and preventing interferon-beta induction.
    Luo X; Pan R; Wan C; Liu X; Wu J; Pan Z
    Virus Res; 2009 Dec; 146(1-2):135-9. PubMed ID: 19782108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dendritic cells--at the front-line of pathogen attack.
    McCullough KC; Ruggli N; Summerfield A
    Vet Immunol Immunopathol; 2009 Mar; 128(1-3):7-15. PubMed ID: 19036457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classical swine fever virus Erns glycoprotein antagonizes induction of interferon-beta by double-stranded RNA.
    Luo X; Ling D; Li T; Wan C; Zhang C; Pan Z
    Can J Microbiol; 2009 Jun; 55(6):698-704. PubMed ID: 19767841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Double-stranded secondary structures on mRNA induce type I interferon (IFN alpha/beta) production and maturation of mRNA-transfected monocyte-derived dendritic cells.
    Ceppi M; Ruggli N; Tache V; Gerber H; McCullough KC; Summerfield A
    J Gene Med; 2005 Apr; 7(4):452-65. PubMed ID: 15515120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classical swine fever virus can remain virulent after specific elimination of the interferon regulatory factor 3-degrading function of Npro.
    Ruggli N; Summerfield A; Fiebach AR; Guzylack-Piriou L; Bauhofer O; Lamm CG; Waltersperger S; Matsuno K; Liu L; Gerber M; Choi KH; Hofmann MA; Sakoda Y; Tratschin JD
    J Virol; 2009 Jan; 83(2):817-29. PubMed ID: 18987150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classical swine fever virus induces activation of plasmacytoid and conventional dendritic cells in tonsil, blood, and spleen of infected pigs.
    Jamin A; Gorin S; Cariolet R; Le Potier MF; Kuntz-Simon G
    Vet Res; 2008; 39(1):7. PubMed ID: 18073094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of interferon regulatory factor 3 in cells infected with classical swine fever virus involves the N-terminal protease, Npro.
    La Rocca SA; Herbert RJ; Crooke H; Drew TW; Wileman TE; Powell PP
    J Virol; 2005 Jun; 79(11):7239-47. PubMed ID: 15890962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro-generated viral double-stranded RNA in contrast to polyinosinic:polycytidylic acid induces interferon-alpha in human plasmacytoid dendritic cells.
    Löseke S; Grage-Griebenow E; Heine H; Wagner A; Akira S; Bauer S; Bufe A
    Scand J Immunol; 2006 Apr; 63(4):264-74. PubMed ID: 16623926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunogenic and replicative properties of classical swine fever virus replicon particles modified to induce IFN-α/β and carry foreign genes.
    Suter R; Summerfield A; Thomann-Harwood LJ; McCullough KC; Tratschin JD; Ruggli N
    Vaccine; 2011 Feb; 29(7):1491-503. PubMed ID: 21184857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N(pro) of classical swine fever virus prevents type I interferon-mediated priming of conventional dendritic cells for enhanced interferon-α response.
    Hüsser L; Ruggli N; Summerfield A
    J Interferon Cytokine Res; 2012 May; 32(5):221-9. PubMed ID: 22313263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding inhibition of viral proteins on type I IFN signaling pathways with modeling and optimization.
    Zou X; Xiang X; Chen Y; Peng T; Luo X; Pan Z
    J Theor Biol; 2010 Aug; 265(4):691-703. PubMed ID: 20553733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classical swine fever virus Npro interacts with interferon regulatory factor 3 and induces its proteasomal degradation.
    Bauhofer O; Summerfield A; Sakoda Y; Tratschin JD; Hofmann MA; Ruggli N
    J Virol; 2007 Apr; 81(7):3087-96. PubMed ID: 17215286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The N-terminal domain of Npro of classical swine fever virus determines its stability and regulates type I IFN production.
    Mine J; Tamura T; Mitsuhashi K; Okamatsu M; Parchariyanon S; Pinyochon W; Ruggli N; Tratschin JD; Kida H; Sakoda Y
    J Gen Virol; 2015 Jul; 96(Pt 7):1746-56. PubMed ID: 25809915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Npro of classical swine fever virus contributes to pathogenicity in pigs by preventing type I interferon induction at local replication sites.
    Tamura T; Nagashima N; Ruggli N; Summerfield A; Kida H; Sakoda Y
    Vet Res; 2014 Apr; 45(1):47. PubMed ID: 24742209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro inhibition of classical swine fever virus replication by siRNAs targeting Npro and NS5B genes.
    Xu X; Guo H; Xiao C; Zha Y; Shi Z; Xia X; Tu C
    Antiviral Res; 2008 Jun; 78(3):188-93. PubMed ID: 18262291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The amino-terminal domain of bovine viral diarrhea virus Npro protein is necessary for alpha/beta interferon antagonism.
    Gil LH; Ansari IH; Vassilev V; Liang D; Lai VC; Zhong W; Hong Z; Dubovi EJ; Donis RO
    J Virol; 2006 Jan; 80(2):900-11. PubMed ID: 16378992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constitutive expression of alpha interferon by skin dendritic cells confers resistance to infection by foot-and-mouth disease virus.
    Bautista EM; Ferman GS; Gregg D; Brum MC; Grubman MJ; Golde WT
    J Virol; 2005 Apr; 79(8):4838-47. PubMed ID: 15795269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective contribution of IFN-alpha/beta signaling to the maturation of dendritic cells induced by double-stranded RNA or viral infection.
    Honda K; Sakaguchi S; Nakajima C; Watanabe A; Yanai H; Matsumoto M; Ohteki T; Kaisho T; Takaoka A; Akira S; Seya T; Taniguchi T
    Proc Natl Acad Sci U S A; 2003 Sep; 100(19):10872-7. PubMed ID: 12960379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.