These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 16154410)

  • 1. Kinematical models to reduce the effect of skin artifacts on marker-based human motion estimation.
    Cerveri P; Pedotti A; Ferrigno G
    J Biomech; 2005 Nov; 38(11):2228-36. PubMed ID: 16154410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Marker-based reconstruction of the kinematics of a chain of segments: a new method that incorporates joint kinematic constraints.
    Klous M; Klous S
    J Biomech Eng; 2010 Jul; 132(7):074501. PubMed ID: 20590294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-invasive approach towards the in vivo estimation of 3D inter-vertebral movements: methods and preliminary results.
    Cerveri P; Pedotti A; Ferrigno G
    Med Eng Phys; 2004 Dec; 26(10):841-53. PubMed ID: 15567700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tracking the motion of hidden segments using kinematic constraints and Kalman filtering.
    Halvorsen K; Johnston C; Back W; Stokes V; Lanshammar H
    J Biomech Eng; 2008 Feb; 130(1):011012. PubMed ID: 18298188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kalman smoothing improves the estimation of joint kinematics and kinetics in marker-based human gait analysis.
    De Groote F; De Laet T; Jonkers I; De Schutter J
    J Biomech; 2008 Dec; 41(16):3390-8. PubMed ID: 19026414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motion estimation using point cluster method and Kalman filter.
    Senesh M; Wolf A
    J Biomech Eng; 2009 May; 131(5):051008. PubMed ID: 19388778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating joint kinematics from skin motion observation: modelling and validation.
    Wolf A; Senesh M
    Comput Methods Biomech Biomed Engin; 2011 Nov; 14(11):939-46. PubMed ID: 21607885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary optimization for robust hierarchical computation of the rotation centres of kinematic chains from reduced ranges of motion the lower spine case.
    Cerveri P; Pedotti A; Ferrigno G
    J Biomech; 2004 Dec; 37(12):1881-90. PubMed ID: 15519596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of soft tissue movement during level walking: translations and rotations of skin markers.
    Gao B; Zheng NN
    J Biomech; 2008 Nov; 41(15):3189-95. PubMed ID: 18930462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional, automated, real-time video system for tracking limb motion in brain-machine interface studies.
    Peikon ID; Fitzsimmons NA; Lebedev MA; Nicolelis MA
    J Neurosci Methods; 2009 Jun; 180(2):224-33. PubMed ID: 19464514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A markerless motion capture system to study musculoskeletal biomechanics: visual hull and simulated annealing approach.
    Corazza S; Mündermann L; Chaudhari AM; Demattio T; Cobelli C; Andriacchi TP
    Ann Biomed Eng; 2006 Jun; 34(6):1019-29. PubMed ID: 16783657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of a new method for finding the rotational axes of the knee using both marker-based roentgen stereophotogrammetric analysis and 3D video-based motion analysis for kinematic measurements.
    Roland M; Hull ML; Howell SM
    J Biomech Eng; 2011 May; 133(5):051003. PubMed ID: 21599094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probabilistic inference of multijoint movements, skeletal parameters and marker attachments from diverse motion capture data.
    Todorov E
    IEEE Trans Biomed Eng; 2007 Nov; 54(11):1927-39. PubMed ID: 18018688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving motion estimation by accounting for local image distortion.
    Behar V; Adam D; Lysyansky P; Friedman Z
    Ultrasonics; 2004 Oct; 43(1):57-65. PubMed ID: 15358529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A posture optimization algorithm for model-based motion capture of movement sequences.
    Zakotnik J; Matheson T; Dürr V
    J Neurosci Methods; 2004 May; 135(1-2):43-54. PubMed ID: 15020088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model-based image-matching technique for three-dimensional reconstruction of human motion from uncalibrated video sequences.
    Krosshaug T; Bahr R
    J Biomech; 2005 Apr; 38(4):919-29. PubMed ID: 15713313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving joint torque calculations: optimization-based inverse dynamics to reduce the effect of motion errors.
    Riemer R; Hsiao-Wecksler ET
    J Biomech; 2008; 41(7):1503-9. PubMed ID: 18396292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of the axis of a screw motion from noisy data--a new method based on Plücker lines.
    Kiat Teu K; Kim W
    J Biomech; 2006; 39(15):2857-62. PubMed ID: 16259991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-stage approach for detection and reduction of motion artifacts in photoplethysmographic data.
    Krishnan R; Natarajan BB; Warren S
    IEEE Trans Biomed Eng; 2010 Aug; 57(8):1867-76. PubMed ID: 20172800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of skin movement on the analysis of hindlimb kinematics during treadmill locomotion in rats.
    Filipe VM; Pereira JE; Costa LM; Maurício AC; Couto PA; Melo-Pinto P; Varejão AS
    J Neurosci Methods; 2006 May; 153(1):55-61. PubMed ID: 16337686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.