These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 16154414)

  • 1. Effect of displacement rate on the tensile mechanics of pediatric cervical functional spinal units.
    Nuckley DJ; Hertsted SM; Eck MP; Ching RP
    J Biomech; 2005 Nov; 38(11):2266-75. PubMed ID: 16154414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental biomechanics of the cervical spine: Tension and compression.
    Nuckley DJ; Ching RP
    J Biomech; 2006; 39(16):3045-54. PubMed ID: 16321394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic tensile failure mechanics of the musculoskeletal neck using a cadaver model.
    Yliniemi EM; Pellettiere JA; Doczy EJ; Nuckley DJ; Perry CE; Ching RP
    J Biomech Eng; 2009 May; 131(5):051001. PubMed ID: 19388771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tensile failure properties of the perinatal, neonatal, and pediatric cadaveric cervical spine.
    Luck JF; Nightingale RW; Song Y; Kait JR; Loyd AM; Myers BS; Bass CR
    Spine (Phila Pa 1976); 2013 Jan; 38(1):E1-12. PubMed ID: 23104191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tensile cervical facet capsule ligament mechanics: failure and subfailure responses in the rat.
    Lee KE; Franklin AN; Davis MB; Winkelstein BA
    J Biomech; 2006; 39(7):1256-64. PubMed ID: 15899488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural space and biomechanical integrity of the developing cervical spine in compression.
    Nuckley DJ; Van Nausdle JA; Eck MP; Ching RP
    Spine (Phila Pa 1976); 2007 Mar; 32(6):E181-7. PubMed ID: 17413458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of anterior shear displacement rate on the structural properties of the porcine cervical spine.
    Gallagher KM; Howarth SJ; Callaghan JP
    J Biomech Eng; 2010 Sep; 132(9):091004. PubMed ID: 20815638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tension and combined tension-extension structural response and tolerance properties of the human male ligamentous cervical spine.
    Dibb AT; Nightingale RW; Luck JF; Chancey VC; Fronheiser LE; Myers BS
    J Biomech Eng; 2009 Aug; 131(8):081008. PubMed ID: 19604020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spinal maturation affects vertebral compressive mechanics and vBMD with sex dependence.
    Nuckley DJ; Eck MP; Carter JW; Ching RP
    Bone; 2004 Sep; 35(3):720-8. PubMed ID: 15336609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viscoelastic properties of the cervical spinal ligaments under fast strain-rate deformations.
    Lucas SR; Bass CR; Salzar RS; Oyen ML; Planchak C; Ziemba A; Shender BS; Paskoff G
    Acta Biomater; 2008 Jan; 4(1):117-25. PubMed ID: 17923449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical properties and failure mechanics of the spine under posterior shear load: observations from a porcine model.
    Yingling VR; McGill SM
    J Spinal Disord; 1999 Dec; 12(6):501-8. PubMed ID: 10598993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Failure properties of cervical spinal ligaments under fast strain rate deformations.
    Bass CR; Lucas SR; Salzar RS; Oyen ML; Planchak C; Shender BS; Paskoff G
    Spine (Phila Pa 1976); 2007 Jan; 32(1):E7-13. PubMed ID: 17202883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of loading rate on the compressive mechanics of the immature baboon cervical spine.
    Elias PZ; Nuckley DJ; Ching RP
    J Biomech Eng; 2006 Feb; 128(1):18-23. PubMed ID: 16532613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical properties of spinal nerve roots subjected to tension at different strain rates.
    Singh A; Lu Y; Chen C; Cavanaugh JM
    J Biomech; 2006; 39(9):1669-76. PubMed ID: 15996674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical assessment of the pediatric cervical spine under bending and tensile loading.
    Ouyang J; Zhu Q; Zhao W; Xu Y; Chen W; Zhong S
    Spine (Phila Pa 1976); 2005 Dec; 30(24):E716-23. PubMed ID: 16371888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frozen storage increases the ultimate compressive load of porcine vertebrae.
    Callaghan JP; McGill SM
    J Orthop Res; 1995 Sep; 13(5):809-12. PubMed ID: 7472761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mechanical properties of rat spinal cord in vitro.
    Fiford RJ; Bilston LE
    J Biomech; 2005 Jul; 38(7):1509-15. PubMed ID: 15922762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strain rate dependent properties of younger human cervical spine ligaments.
    Mattucci SF; Moulton JA; Chandrashekar N; Cronin DS
    J Mech Behav Biomed Mater; 2012 Jun; 10():216-26. PubMed ID: 22520433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The human cervical spine in tension: effects of frame and fixation compliance on structural responses.
    Nightingale RW; Chancey VC; Luck JF; Tran L; Ottaviano D; Myers BS
    Traffic Inj Prev; 2004 Jun; 5(2):151-5. PubMed ID: 15203951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of strain rate on tensile properties of sheep disc anulus fibrosus.
    Kasra M; Parnianpour M; Shirazi-Adl A; Wang JL; Grynpas MD
    Technol Health Care; 2004; 12(4):333-42. PubMed ID: 15502284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.