These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 16154500)

  • 1. Rhodococcus sp. F92 immobilized on polyurethane foam shows ability to degrade various petroleum products.
    Quek E; Ting YP; Tan HM
    Bioresour Technol; 2006 Jan; 97(1):32-8. PubMed ID: 16154500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repeated batch cultivation of the hydrocarbon-degrading, micro-algal strain Prototheca zopfii RND16 immobilized in polyurethane foam.
    Ueno R; Wada S; Urano N
    Can J Microbiol; 2008 Jan; 54(1):66-70. PubMed ID: 18388973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of hydrocarbon contamination by immobilized bacterial cells.
    Rahman RN; Ghaza FM; Salleh AB; Basri M
    J Microbiol; 2006 Jun; 44(3):354-9. PubMed ID: 16820766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Petroleum oil removal by immobilized bacterial cells on polyurethane foam under different temperature conditions.
    Alessandrello MJ; Juárez Tomás MS; Raimondo EE; Vullo DL; Ferrero MA
    Mar Pollut Bull; 2017 Sep; 122(1-2):156-160. PubMed ID: 28641883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrocarbon emulsification and enhanced crude oil degradation by lauroyl glucose ester.
    Kelkar DS; Kumar AR; Zinjarde SS
    Bioresour Technol; 2007 May; 98(7):1505-8. PubMed ID: 16824750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of microorganism-immobilized polyurethane foams to absorb and degrade oil on water surface.
    Oh YS; Maeng J; Kim SJ
    Appl Microbiol Biotechnol; 2000 Sep; 54(3):418-23. PubMed ID: 11030581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Low-temperature microbial degradation of crude oil products differing in the extent of condensation].
    Belousova NI; Shkidchenko AN
    Prikl Biokhim Mikrobiol; 2004; 40(3):312-6. PubMed ID: 15283334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of car engine base oil by Rhodococcus sp. NDKK48 and Gordonia sp. NDKY76A.
    Koma D; Sakashita Y; Kubota K; Fujii Y; Hasumi F; Chung SY; Kubo M
    Biosci Biotechnol Biochem; 2003 Jul; 67(7):1590-3. PubMed ID: 12913308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation of p-cresol by immobilized cells of Bacillus sp. strain PHN 1.
    Tallur PN; Megadi VB; Ninnekar HZ
    Biodegradation; 2009 Feb; 20(1):79-83. PubMed ID: 18642119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Kinetics of the degradation of aliphatic hydrocarbons by the bacteria Rhodococcus ruber and Rhodococcus erythropolis].
    Zhukov DV; Murygina VP; Kaliuzhnyĭ SV
    Prikl Biokhim Mikrobiol; 2007; 43(6):657-63. PubMed ID: 18173107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and application of Gordonia sp. JC11 for removal of boat lubricants.
    Chanthamalee J; Luepromchai E
    J Gen Appl Microbiol; 2012; 58(1):19-31. PubMed ID: 22449747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alkane utilization by Rhodococcus strain NTU-1 alone and in its natural association with Bacillus fusiformis L-1 and Ochrobactrum sp.
    Sayavedra-Soto LA; Chang WN; Lin TK; Ho CL; Liu HS
    Biotechnol Prog; 2006; 22(5):1368-73. PubMed ID: 17022676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel lipopeptide produced by a Pacific Ocean deep-sea bacterium, Rhodococcus sp. TW53.
    Peng F; Wang Y; Sun F; Liu Z; Lai Q; Shao Z
    J Appl Microbiol; 2008 Sep; 105(3):698-705. PubMed ID: 18422956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of hydrocarbons and alcohols at different temperatures and salinities by Rhodococcus erythropolis DCL14.
    de Carvalho CC; da Fonseca MM
    FEMS Microbiol Ecol; 2005 Feb; 51(3):389-99. PubMed ID: 16329886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradation of diesel by mixed bacteria immobilized onto a hybrid support of peat moss and additives: a batch experiment.
    Lee YC; Shin HJ; Ahn Y; Shin MC; Lee M; Yang JW
    J Hazard Mater; 2010 Nov; 183(1-3):940-4. PubMed ID: 20691535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradation of medium chain hydrocarbons by Acinetobacter venetianus 2AW immobilized to hair-based adsorbent mats.
    Luckarift HR; Sizemore SR; Farrington KE; Fulmer PA; Biffinger JC; Nadeau LJ; Johnson GR
    Biotechnol Prog; 2011; 27(6):1580-7. PubMed ID: 21948333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation of Gram-positive n-alkane degraders from a hydrocarbon-contaminated Mediterranean shoreline.
    Quatrini P; Scaglione G; De Pasquale C; Riela S; Puglia AM
    J Appl Microbiol; 2008 Jan; 104(1):251-9. PubMed ID: 17922832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp.
    Whyte LG; Hawari J; Zhou E; Bourbonnière L; Inniss WE; Greer CW
    Appl Environ Microbiol; 1998 Jul; 64(7):2578-84. PubMed ID: 9647833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation of crude oil by a newly isolated strain Rhodococcus sp. JZX-01.
    Li C; Zhou ZX; Jia XQ; Chen Y; Liu J; Wen JP
    Appl Biochem Biotechnol; 2013 Dec; 171(7):1715-25. PubMed ID: 23996118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on immobilization of marine oil-degrading bacteria by carrier of algae materials.
    Zhang Y; Gao W; Lin F; Han B; He C; Li Q; Gao X; Cui Z; Sun C; Zheng L
    World J Microbiol Biotechnol; 2018 May; 34(6):70. PubMed ID: 29777442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.