BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 16154633)

  • 1. Collagen composite hydrogels for vocal fold lamina propria restoration.
    Hahn MS; Teply BA; Stevens MM; Zeitels SM; Langer R
    Biomaterials; 2006 Mar; 27(7):1104-9. PubMed ID: 16154633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An alginate hydrogel matrix for the localised delivery of a fibroblast/keratinocyte co-culture.
    Hunt NC; Shelton RM; Grover L
    Biotechnol J; 2009 May; 4(5):730-7. PubMed ID: 19452469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and characterization of collagen/hyaluronan/chitosan composite sponges for potential biomedical applications.
    Lin YC; Tan FJ; Marra KG; Jan SS; Liu DC
    Acta Biomater; 2009 Sep; 5(7):2591-600. PubMed ID: 19427824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photopatterned collagen-hyaluronic acid interpenetrating polymer network hydrogels.
    Suri S; Schmidt CE
    Acta Biomater; 2009 Sep; 5(7):2385-97. PubMed ID: 19446050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of hydrogel mechanical properties and mesh size on vocal fold fibroblast extracellular matrix production and phenotype.
    Liao H; Munoz-Pinto D; Qu X; Hou Y; Grunlan MA; Hahn MS
    Acta Biomater; 2008 Sep; 4(5):1161-71. PubMed ID: 18515199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing vocal fold fibroblast response to hyaluronan in 3D contexts.
    Munoz-Pinto DJ; Jimenez-Vergara AC; Gelves LM; McMahon RE; Guiza-Arguello V; Hahn MS
    Biotechnol Bioeng; 2009 Nov; 104(4):821-31. PubMed ID: 19718686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repair of large cranial defects by hBMP-2 expressing bone marrow stromal cells: comparison between alginate and collagen type I systems.
    Chang SC; Chung HY; Tai CL; Chen PK; Lin TM; Jeng LB
    J Biomed Mater Res A; 2010 Aug; 94(2):433-41. PubMed ID: 20186742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of perfusion on metabolism and matrix production by bovine articular chondrocytes in hydrogel scaffolds.
    Xu X; Urban JP; Tirlapur U; Wu MH; Cui Z; Cui Z
    Biotechnol Bioeng; 2006 Apr; 93(6):1103-11. PubMed ID: 16470872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maintaining dimensions and mechanical properties of ionically crosslinked alginate hydrogel scaffolds in vitro.
    Kuo CK; Ma PX
    J Biomed Mater Res A; 2008 Mar; 84(4):899-907. PubMed ID: 17647237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combinatorial cell-3D biomaterials cytocompatibility screening for tissue engineering using bioinspired superhydrophobic substrates.
    Salgado CL; Oliveira MB; Mano JF
    Integr Biol (Camb); 2012 Mar; 4(3):318-27. PubMed ID: 22301669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition of mechanical property of porous alginate scaffold with cells during culture period.
    Sakai S; Masuhara H; Yamada Y; Ono T; Ijima H; Kawakami K
    J Biosci Bioeng; 2005 Jul; 100(1):127-9. PubMed ID: 16233864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis.
    Bosnakovski D; Mizuno M; Kim G; Takagi S; Okumura M; Fujinaga T
    Biotechnol Bioeng; 2006 Apr; 93(6):1152-63. PubMed ID: 16470881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution.
    Boontheekul T; Kong HJ; Mooney DJ
    Biomaterials; 2005 May; 26(15):2455-65. PubMed ID: 15585248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and characterization of a biodegradable composite scaffold for ligament tissue engineering.
    Hayami JW; Surrao DC; Waldman SD; Amsden BG
    J Biomed Mater Res A; 2010 Mar; 92(4):1407-20. PubMed ID: 19353565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategies for zonal cartilage repair using hydrogels.
    Klein TJ; Rizzi SC; Reichert JC; Georgi N; Malda J; Schuurman W; Crawford RW; Hutmacher DW
    Macromol Biosci; 2009 Nov; 9(11):1049-58. PubMed ID: 19739068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shear-reversibly crosslinked alginate hydrogels for tissue engineering.
    Park H; Kang SW; Kim BS; Mooney DJ; Lee KY
    Macromol Biosci; 2009 Sep; 9(9):895-901. PubMed ID: 19422012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymeric Microspheres Containing Human Vocal Fold Fibroblasts for Vocal Fold Regeneration.
    Reyes Valenzuela A; Bao G; Vikstrom A; Kost KM; Prakash S; Mongeau L
    Laryngoscope; 2021 Aug; 131(8):1828-1834. PubMed ID: 33068297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alginate hydrogels as biomaterials.
    Augst AD; Kong HJ; Mooney DJ
    Macromol Biosci; 2006 Aug; 6(8):623-33. PubMed ID: 16881042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyaluronic acid-based microgels and microgel networks for vocal fold regeneration.
    Jia X; Yeo Y; Clifton RJ; Jiao T; Kohane DS; Kobler JB; Zeitels SM; Langer R
    Biomacromolecules; 2006 Dec; 7(12):3336-44. PubMed ID: 17154461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of matrix composition, microstructure, and viscoelasticity on the behaviors of vocal fold fibroblasts cultured in three-dimensional hydrogel networks.
    Farran AJ; Teller SS; Jha AK; Jiao T; Hule RA; Clifton RJ; Pochan DP; Duncan RL; Jia X
    Tissue Eng Part A; 2010 Apr; 16(4):1247-61. PubMed ID: 20064012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.